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Abstract

English. In this paper we present PRET, a

gold dataset annotated for prerequisite re-

lations between educational concepts ex-

tracted from a computer science textbook,

and we describe the language and domain

independent approach for the creation of

the resource. Additionally, we have cre-

ated an annotation tool to support, validate

and analyze the annotation.

Italiano. In questo articolo presentiamo

PRET, un dataset annotato manualmente

rispetto alla relazione di prerequisito fra

concetti estratti da un manuale di infor-

matica, e descriviamo la metodologia, in-

dipendente da lingua e dominio, usata per

la creazione della risorsa. Per favorire

l’annotazione, abbiamo creato uno stru-

mento per il supporto, la validazione e

l’analisi dell’annotazione.

1 Introduction

Educational Concept Maps (ECM) are acyclic

graphs which formally represent a domain’s

knowledge and make explicit the pedagogical de-

pendency relations between concepts (Adorni and

Koceva, 2016). A concept, in an ECM, is an

atomic piece of knowledge of the subject domain.

From a pedagogical point of view, the most im-

portant dependency relation between concepts is

the prerequisite relation, that explicits which con-

cepts a student has to learn before moving to the

next. Several approaches have been proposed to

extract prerequisite relations from various educa-

tional sources (Vuong et al., 2011; Yang et al.,

2015; Gordon et al., 2016; Wang et al., 2016;

Liang et al., 2017; Liang et al., 2018; Adorni et

al., 2018). Textbooks in particular are a valuable

resource for this task since they are designed to

support the learning process respecting the prereq-

uisite relation.

In the literature, the evaluation of the extracted

prerequisite relations is usually performed through

comparison with a gold standard produced by hu-

man subjects that annotate relations between con-

cepts (see, among the others, (Talukdar and Co-

hen, 2012; Liang et al., 2015; Fabbri et al., 2018)).

However, most of the evaluations lack a systematic

approach or simply lack the details that allow them

to be repeated. In this paper, we present our ex-

perience in building PRET (Prerequisite-Enriched

Terminology), a gold dataset annotated with the

prerequisite relation between pairs of concepts.

The issues emerged with PRET led us to define

a methodology and a tool for manual prerequisite

annotation. The goal of the tool is to support the

creation of gold datasets for validating automatic

extraction of prerequisites. Both the PRET dataset

and the tool are available online1.

PRET was constructed in two main steps: first

we exploited computational linguistics methods

to extract relevant terms from a textbook2, then

we asked humans to manually identify and anno-

tate the prerequisite relations between educational

concepts. Since the terminology creation step was

extensively described in Adorni et al. (2018), this

paper mainly focuses on the annotation phase.

The annotation task consists in making explicit

the prerequisite relations between two distinct

concepts if the relation is somehow inferable from

the text in question. We represent a concept as a

domain–specific term denoting domain entities ex-

pressed by either single nominal terms (e.g. inter-

net, network, software) or complex nominal struc-

tures with modifiers (e.g. malicious software, tro-

jan horse, HyperText Document). Figure 1 shows

1http://teldh.dibris.unige.it/pret
2For the annotation we used chapter 4 of the computer sci-

ence textbook “Computer Science: An Overview” (Brook-
shear and Brylow, 2015).
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Figure 1: Sample of PRET represented as an

ECM.

a sample of the ECM resulting from PRET. Ac-

cording to PRET dataset, an example of prerequi-

site relation is network is a prerequisite of internet,

since a student has to know network before learn-

ing internet.

The paper is organized as follows. The re-

lated work pertaining to the proposed method is

discussed in Section 2. Section 3 describes the

methodology used for the creation of the PRET

dataset and Section 4 presents the characteristics

of the obtained gold dataset and the agreement

computed for each pair of annotators together with

other statistics about the data. Section 5 describes

the main features of the annotation tool we de-

signed. Section 6 concludes the paper.

2 Related Work

Automatic prerequisite identification is a task that

gained growing interest in recent years, especially

among scholars interested in automatic synthesis

of study plans (Gasparetti et al., 2015; Yang et al.,

2015; Agrawal et al., 2016; Alsaad et al., 2018).

When applying automatic prerequisite extraction

methods, a baseline for evaluation is needed. De-

spite being time consuming, creating manually an-

notated datasets is more effective and produces

gold resources, which are still rare.

To the best of our knowledge, Talukdar and Co-

hen (2012) is the only case where crowd–sourcing

is employed for annotation: they infer prerequi-

site relationship between concepts by exploiting

hyper-links in Wikipedia pages and use crowd-

sourcing to validate those relations in order to have

a gold training dataset for a classifier.

More frequently the annotation of prerequisite

relations is performed by domain experts (Liang et

al., 2015; Liang et al., 2018; Fabbri et al., 2018) or

by students with a certain competence on the do-

main (Wang et al., 2015; Pan et al., 2017). When

annotation is performed by non–experts, agree-

ment usually results very low, so an expert can

be consulted (Chaplot et al., 2016; Gordon et al.,

2016). Regardless of the annotation methodology,

we observe that in the mentioned related works

prerequisite relation properties (i.e. irreflexivity,

anti–symmetry, etc.) are rarely taken into account

in the annotation instructions for annotators. For

example, the fact that a concept cannot be anno-

tated as prerequisite of itself is usually left unspec-

ified.

To support the annotation of prerequisites be-

tween pairs of concepts, Gordon et al. (2016) de-

veloped an interface showing, for each concept of

the domain, the list of relevant terms and docu-

ments. Although this can be of some support for

the annotation providing certain useful informa-

tion, it cannot be considered an annotation tool it-

self. According to our knowledge, a tool specif-

ically designed for prerequisite structure annota-

tion which also features agreement metrics is still

missing.

3 Annotation Methodology

In Section 4 we will describe the PRET dataset,

while here we present the annotation methodology

that we used to build PRET and that we refined on

the basis of such experience.

Concept identification. Our methodology for

prerequisite annotation requires that concepts are

extracted from educational materials, that we

broadly define Document (D), and provided to an-

notators. Although we are conscious that a con-

cept, as mental structure, might entail multiple

terms, we simplify the problem of concept iden-

tification assuming that each relevant term of D

represents a concept (Novak and Cañas, 2006).

Thus, our list of concepts is a terminology (T) of

domain–specific terms (either single or complex

nominal structures) ordered according to the first

appearance of the terms of T in D and where each

concept corresponds to a single term.

For the task of prerequisite annotation, it does

not matter if concepts are extracted automati-

cally, manually or semi–automatically. To build

PRET, we extracted concepts automatically. To

identify our terminology T, we relied on Text-

To-Knowledge (T2K2) (Dell’Orletta et al., 2014),

a software platform developed at the Institute

of Computational Linguistics A. Zampolli of the

CNR in Pisa. T2K2 exploits Natural Language

Processing, statistical text analysis and machine
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learning to extract and organize the domain knowl-

edge from a linguistically annotated text.

We applied T2K2 to a text of 20,378 tokens dis-

tributed over 751 sentences. 185 terms were rec-

ognized as concepts of the domain (around 20% of

the total number of nouns in the corpus). As ex-

pected, the extracted terminology contained both

single nominal structures, such as computer, net-

work and software, and complex nominal struc-

tures with modifiers, like hypertext transfer pro-

tocol, world wide web and hypertext markup lan-

guage. The set of concepts did not go through any

post–processing phase.

Annotators selection. The role of annotators is

fundamental in order to obtain a gold dataset that

represents the pedagogical relations expressed in

the educational material. Consequently, the choice

of annotators is crucial. As mentioned above, in

the literature annotators are often domain experts

(Liang et al., 2015; Liang et al., 2018; Fabbri

et al., 2018) or students with some knowledge in

that domain (Wang et al., 2015; Pan et al., 2017).

Based on our experience with different types of

annotators, we suggest that annotators should have

enough knowledge to understand the content of

the educational material. Otherwise, the anno-

tation can be distorted by wrong comprehension

of the relations between concepts. On the other

hand, experts should not rely on their background

knowledge to identify relations, since the goal of

the annotation is to capture the knowledge embod-

ied in the educational resource. To build PRET we

recruited 6 annotators among professors and PhD

students working in fields related to computer sci-

ence, but eventually 2 of them revealed not to have

enough knowledge for the task.

Annotation task. A prerequisite relation be-

tween two concepts A and B is defined as a de-

pendency relation which represents what a learner

must know/study (concept A), before approaching

concept B. Thus, by definition, the prerequisite re-

lation has the following properties: i) asymmetry:

if concept A is a prerequisite of concept B, the op-

posite cannot be true (e.g. network is prerequisite

of internet, so internet cannot be prerequisite of

network); ii) irreflexivity: a concept cannot be pre-

requisite of itself; iii) transitiveness: if concept A

is a prerequisite of concept B, and concept B of

concept C, then concept A is also a prerequisite of

concept C (e.g. browser is prerequisite of HTTP,

HTTP is prerequisite of WWW, hence browser is

prerequisite of WWW according to the transitive

property).

To keep the annotation as uniform as possible,

we provided the annotators with suggestions on

how to perform the task together with the book

chapter and the terminology extracted from it.

Considering the material supplied, we asked an-

notators to trust the text considering only pairs of

distinct concepts of T and annotating the existence

of a prerequisite relation between the two concepts

only if derivable from D. In our method, annota-

tors should read the text and, for each new concept

(i.e. never mentioned in the previous lines), iden-

tify all its prerequisites, but, if no prerequisite can

be identified, they should not enter any annotation.

We also wanted pedagogical relation properties to

be preserved, so we asked to respect the irreflex-

ive property not annotating self–prerequisites and

to avoid adding transitive relations. Considering

the topology of an ECM, we also asked annota-

tors not to enter cycles in the annotation because

they represent conceptually wrong relations. To

better understand this point, consider the ECM in

Figure 1: having a prerequisite relation between

computer and network and between network and

internet, entering a relation where internet is pre-

requisite of computer would create a cycle (loop).

The output of the annotation of each annota-

tor is an enriched terminology: a set of concepts

paired and enhanced with the prerequisite relation.

The enriched terminology can be used to create

an ECM where each concept is a node and the

edges are prerequisite relations identified by hu-

mans (see Figure 1).

Annotation validation. Human annotators are

not immune from making mistakes and violating

the supplied recommendations. The tool we pro-

pose addresses this issue by introducing controls

to prevent the annotators from making errors (e.g.

cycles, reflexive relations, symmetric relations).

In the next section we will describe the approach

we used to identify some mistakes by using graph

analysis algorithms.

Annotators agreement evaluation. Our expe-

rience and the literature (Fabbri et al., 2018) show

that human judgments about prerequisite identi-

fication can vary considerably, even when strict

guidelines are provided. This can depend on sev-

eral factors, including the subjectivity of annota-

tors and the type and complexity of D. Evaluating

the annotators’ agreement can be useful to assess
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Relation Type Weight Count (%)

Non–prerequisite 0 33,699 (98.46%)

Prerequisite All weights 526 (154%)
1 annot. 0.25 293 (55.70%)
2 annot. 0.50 131 (24.90%)
3 annot. 0.75 75 (14.26%)
4 annot. 1 27 (5.13%)

Total number of pairs 34,225

Table 1: Relations and weight distribution in

PRET dataset.

if the gold dataset is to be trusted or further an-

notators are required. Section 4 will describe the

measures we used to evaluate annotators’ agree-

ment in PRET.

The final combination of the enriched termi-

nologies produced by each annotator is a neces-

sary step to build a gold dataset but, due to space

constraints, below we will only present our ap-

proach, while a survey on combination metrics is

out of the scope of this paper.

4 The PRET Dataset

The PRET gold dataset consists of 34,225 con-

cept pairs obtained by all possible combinations of

the elements in the concepts set (excluding self–

prerequisites). Pairs vary with respect to the re-

lation weight, computed for each pair by dividing

the number of annotators that annotated the pair by

the total number of annotators. Only 1.54% (526)

of the pairs has a relation weight higher than 0 (i.e.

it was annotated as prerequisite by at least one an-

notator). Details about the distribution of prereq-

uisite relations and respective weights are reported

in Table 1.

55.70% (293) of the prerequisite pairs was iden-

tified by only one annotator, meaning that it is hard

for humans to agree on what a prerequisite is. We

further investigate this aspect in section 4.1.

The analysis of the dataset carried out before

applying validation checks highlighted some crit-

ical issues: some transitive relations were explic-

itly annotated and some cycles were erroneously

added in the dataset, violating the instructions.

While cycles are due to distraction, transitive rela-

tions are hard to recognize per se, especially when

broad terms are involved (e.g. computer, software,

machine).

In order to study how these issues impact the

dataset, each annotation was validated against cy-

cles and transitive relations obtaining 5 dataset

variations, in addition to the original annotation.

The validation was conducted on the ECM derived

from the enriched terminology of each annotator

using a graph analysis algorithm. We operated on

cycles and transitive relations. In some variations,

the latter were added if the pair of concepts in the

ECM is connected by a path shorter than a certain

threshold, defined by considering the ECM diame-

ter, while cycles were either preserved or removed

depending on the variation we wanted to obtain.

Eventually, we obtained the following an-

notation variations: no cycles (removing cy-

cles), cycles and transitive (preserving cycles

and adding transitive relations), cycles and non–

transitive (preserving cycles and keeping only di-

rect links), no cycles and transitive (removing cy-

cles and adding transitivity) and no cycles and

non–transitive (removing both cycles and transi-

tivity).

4.1 Annotators Agreement in PRET

Following Artstein and Poesio (2008), we com-

puted the agreement between multiple annotators

using Fleiss’ k (Fleiss, 1971) and between pairs

of annotators using Cohen’s k (Cohen, 1960). Us-

ing the scale defined by Landis and Koch (1977),

Fleiss’ k values show fair agreement, suggesting

that prerequisite annotation is difficult. Similar

tasks obtained comparable or lower values, con-

firming our hypothesis: Gordon et al. (2016) mea-

sured the agreement as Pearson Correlation ob-

taining 36%, while Fabbri et al. (2018) and Chap-

lot et al. (2016) obtained respectively 30% and

19% of Fleiss’ k.

Compared to the other variations, removing cy-

cles and adding transitive relations showed the

highest improvement on the agreement, also for

pairs of annotators (Table 2). Our results sug-

gest that different competence level entails dif-

ferent annotations and values of agreement, con-

firming previous results (Gordon et al., 2016):

lower agreement can be observed when annotator

4 (quasi–expert) is involved, possibly due to the

lower competence level if compared to the other

annotators. Annotator 4 is also the one who con-

sidered the highest number of transitive relations,

producing a more connected ECM: it is likely that

when the competence in the domain is lower, a

person tends to consider a higher number of pre-

requisites for each concept. On the other hand, an-

notators with more experience show even moder-

ate (pairs A1-A3 and A2-A3) or substantial agree-
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Metric Orig.
No Cycl.
& Trans.

Diff

Fleiss’s k All raters 38.50% 39.94% +1.44

Cohen’s k A1-A2 34.46% 42.81% +8.35
A1-A3 57.80% 50.84% -6.96
A1-A4 37.59% 39.29% +1.70
A2-A3 56.50% 63.62% +7.12
A2-A4 28.02% 29.42% +1.40
A3-A4 25.35% 25.71% +0.36

Table 2: Agreement values and differences for two

annotation variations.

ment (pair A2-A3 for the variation). Adding tran-

sitive relations and removing cycles generally im-

proves the agreement values also when we con-

sider pairs: we notice an increase of 8.35 points

for A1-A2. The only exception is observed for the

pair A1-A3, which experienced a decrease of al-

most 7 points. The cause is though to be the num-

ber of transitive relations considered by annotator

3, which is around one third of the transitive re-

lations annotated by annotator 1: the validation

creates more distance between the two annotations

reducing the agreement.

As a support for the annotation, the experts used

a n × n matrix of the terminology T where they

entered a binary value in the intersection between

two concepts to indicate the presence of a pre-

requisite relation. We believe that our results are

partially influenced by the instrument we used to

perform the annotation: a large matrix structure

is likely to cause distraction errors and does not

perform validation checks during the annotation.

Based on this experience and the encountered is-

sues, we developed an annotation tool able to sup-

port and validate the annotation. It will be de-

scribed in the next section.

5 Annotation and Analysis Tool

We provide a language and domain independent

prototype tool which aims on the one hand to sup-

port and validate the annotation process and on

the other hand to perform annotation analysis. All

its main features have been designed taking into

account real problems encountered while build-

ing PRET. Thus, this tool is highly valuable for

annotators because specifically addresses annota-

tors’ needs and, at the same time, avoids possible

annotation biases. In particular, the tool has three

main functionalities: annotation support, annota-

tion representation and analysis of the results.

To support the annotation, the user is provided

with the terminology T as a list L of concepts or-

dered by their first occurrence in the text. This is

done in order to give the annotator an overview of

the context in which the concept occurs. We ob-

served that the textual context plays a crucial role

in deciding which concepts are prerequisites of the

one under observation, so for each term we show

the list of other terms with visual indication of the

progress in the text. Additionally, as said before,

the tool validates the map resulting from the anno-

tation against the existence of symmetric relations,

transitivity and cycles.

Once the annotation is completed, the user can

choose to generate different types of visualization

of her/his annotation. The goal of this functional-

ity is to provide information visualization and data

summarization for analyzing and exploring the re-

sult of the annotation. We provide the following

different views: Matrix (ordered by concept fre-

quency, clusters, temporal, occurrence or alpha-

betic order), Arc Diagram, Graph and Clusters.

Furthermore, the Data Synthesis task provides the

number of concepts, number of relations, number

and list of disconnected nodes and transitive rela-

tions.

Lastly, the tool computes the agreement be-

tween relations inserted by all annotators who took

part in the task (see Section 4.1) and provides vi-

sualization of the final dataset, which results as

a combination of all users’ annotation. This fea-

ture also outputs a Data Synthesis that provides the

number of relations of every annotator, number of

transitive relations and the direction of conflicting

relations between annotators.

The demo version of the tool is available online

at the URL provided in the Introduction.

6 Conclusion and Future Work

In this paper, we described PRET, a gold dataset

manually annotated for prerequisite relations be-

tween pairs of concepts; moreover we presented

the methodology we adopted and a tool to support

prerequisite annotation. The case study, even lim-

ited as for the number of annotators and the edu-

cational material, was a reasonably good training

ground to set the basis to define a methodology

for prerequisite annotation and to identify the ma-

jor issues related to this task. Moreover, the anal-

ysis of the annotation provided insights for auto-

matic identification of concepts and prerequisites,

that will be investigated in future work.
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