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ABSTRACT
Knowledge Tracing is the de-facto standard for inferring stu-
dent knowledge from performance data. Unfortunately, it
does not allow modeling the feature-rich data that is now
possible to collect in modern digital learning environments.
Because of this, many ad hoc Knowledge Tracing variants
have been proposed to model a specific feature of interest.
For example, variants have studied the effect of students’
individual characteristics, the effect of help in a tutor, and
subskills. These ad hoc models are successful for their own
specific purpose, but are specified to only model a single
specific feature.

We present FAST (Feature Aware Student knowledge Trac-
ing), an efficient, novel method that allows integrating gen-
eral features into Knowledge Tracing. We demonstrate FAST’s
flexibility with three examples of feature sets that are rel-
evant to a wide audience. We use features in FAST to
model (i) multiple subskill tracing, (ii) a temporal Item Re-
sponse Model implementation, and (iii) expert knowledge.
We present empirical results using data collected from an
Intelligent Tutoring System. We report that using features
can improve up to 25% in classification performance of the
task of predicting student performance. Moreover, for fitting
and inferencing, FAST can be 300 times faster than models
created in BNT-SM, a toolkit that facilitates the creation of
ad hoc Knowledge Tracing variants.
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1. INTRODUCTION
Various kinds of e-learning systems, such as Massively Open
Online Courses and intelligent tutoring systems, are now

∗Both authors contributed equally to the paper.

producing large amounts of feature-rich data from students
solving items at different levels of proficiency over time. To
analyze such data, researchers often use Knowledge Trac-
ing [7], a 20-year old method that has become the de-facto
standard for inferring student knowledge. Unfortunately,
Knowledge Tracing uses only longitudinal performance data
and does not permit feature engineering to take advantage of
the data that is collected in modern e-learning systems, such
as student or item differences. Prior work has focused on ad-
hoc modifications to Knowledge Tracing to enable modeling
a specific feature of interest. This has led to a plethora of
different Knowledge Tracing reformulations for very specific
purposes. For example, variants have studied measuring the
effect of students’ individual characteristics [15, 18, 21, 29],
assessing the effect of help in a tutor system [3, 25], control-
ling for item difficulty [10, 20, 26], and measuring the effect
of subskills [28]. Although these ad hoc models are success-
ful for their own specific purpose, they are single-purpose
and require considerable effort to build.

We propose Feature-Aware Student knowledge Tracing (FAST),
a novel method that allows efficient general features into
Knowledge Tracing. We propose FAST as a general model
that can use features collected from digital learning envi-
ronments. The rest of this paper is organized as follows:
Section 2 describes the scope of the features FAST is able to
model; Section 3 describes the FAST algorithm; Section 4 re-
ports examples of using features with FAST; Section 5 com-
pares FAST’s execution time with models created by BNT-
SM; Section 6 relates to prior work; Section 7 concludes.

2. KNOWLEDGE TRACING FAMILY
In this section we define a group of models that we call
the Knowledge Tracing Family. We argue that a significant
amount of prior work has reinvented models in the Knowl-
edge Tracing Family for very diverse uses, yet their struc-
tures when represented as a graphical model are very similar.
As we will see, by design, FAST is able to represent all the
models in the Knowledge Tracing Family.

Figure 1 uses plate notation to describe the graphical models
for the Knowledge Tracing Family of models. In plate nota-
tion, the clear nodes represent latent variables; the light gray
nodes represent variables that are observed only in training;
dark nodes represent variables that are both visible in train-
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Figure 1: Plate diagrams of the Knowledge Tracing Family models.

Table 1: Variants of the Knowledge Tracing model

Feature Emission Transition Both

Student ability [21] [18, 29]
Item difficulty [10, 20] [26]
Subskills [28]
Help [25] [3]

ing and testing; plates represent repetition of variables.

Figure 1a describes the original Knowledge Tracing formula-
tion. Knowledge Tracing uses Hidden Markov Models [23] to
model students’ knowledge as latent variables. The binary
observation variable (yq,t) represents whether the student
gets a question correct at the tth learning opportunity of
skill q. The binary latent variable (kq,t) represents whether
the student has learned the skill q at the tth learning oppor-
tunity. In the context of Knowledge Tracing, the transition
probabilities between latent states are often referred to as
learning and forgetting probabilities. The emission proba-
bilities are commonly referred to as guess and slip proba-
bilities. Figures 1b and 1c describe two common modifica-
tions of Knowledge Tracing: adding features to parametrize
the emission probabilities (fq,t,e ), and adding features to
parametrize the transition probabilities (fq,t,l). In this con-
text, the features nodes are discrete or continuous variables
that affect the performance of students or their learning. It
is also possible to parametrize both the emission and the
transition features. Table 1 summarizes some prior work
that has reinvented the same graphical model with a differ-
ent interpretation of the feature nodes, and are in fact part
of the Knowledge Tracing Family.

To assist with the creation of models of the Knowledge
Tracing Family, previous research has proposed a dynamic
Bayesian network toolkit for student modeling [6]. Unfortu-
nately, extending Knowledge Tracing using dynamic Bayesian
networks is tractable only for the simplest models – exact
inference on dynamic Bayesian networks is exponential in
the number of parents a node has [19]. More specifically,
as the number of features increases (E in Figure 1b and L
in Figure 1c), the time and space complexity of the model
grows exponentially. We believe that this exponential cost
is the reason that although there is a plethora of Knowledge
Tracing variants, they are only used for a single purpose. In
the next section we describe FAST, a method that is able to
generalize all models of the Knowledge Tracing family using
a large number of features, but with a complexity that only
grows linearly to the number of features.

λ k

E step: Forward-Backward algorithm

M step: Maximum Likelihood Estimate using expected counts

Binomial parameters
(transition and emission)

latent states
(knowledge nodes)

Figure 2: EM algorithm.

λ k
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M step: Maximal Likelihood of fractional counts

Binomial parameters
(transition and emission)

latent states
(knowledge nodes)

λ k

E step: unchanged

train weighted
logistic regression

Binomial parameters latent states

β
scale using
logistic regression

Figure 3: EM with Features algorithm [4].

3. FEATURE-AWARE STUDENT
KNOWLEDGE TRACING

FAST extends Knowledge Tracing to allow features in the
emissions and transitions using the graphical model struc-
ture in Figure 1d. Unlike conventional Knowledge Trac-
ing that uses conditional probability tables for the guess,
slip and learning probabilities, FAST uses logistic regression
parameters. Conditional probability tables make inference
exponential in the number of features, while FAST’s perfor-
mance is only linear in the number of features.

For parameter learning, FAST uses the Expectation Maxi-
mization with Features algorithm [4] – a recent modification
of the original Expectation Maximization (EM) algorithm
that is used in Knowledge Tracing. For simplicity, in this
paper we focus on only emission features. In preliminary ex-
periments we discovered that emission features outperform
transition features, and using both did not yield a statisti-
cally significant improvement.

The rest of this section discusses parameter learning. Sec-
tion 3.1 reviews the EM algorithm used in the Knowledge
Tracing Family, and Section 3.2 describes the EM with Fea-
tures algorithm.

3.1 Expectation Maximization
The EM algorithm is a popular approach to estimate the
parameters of Knowledge Tracing. Figure 2 shows the two
steps of the algorithm. The “E step”, uses the current pa-
rameter estimates (λ) for the transition and emission proba-
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bilities to infer the probability the student has mastered the
skill at each practice opportunity. Inferring mastery can be
efficiently computed with the Forward-backward algorithm.
The“M step”, recomputes the parameter estimates (λ) given
the estimated probabilities of mastery computed in the E
step. For example, the estimate of the emission parameter
of answering y′ at latent state k′ can be estimated as:

λy′,k′
= p(y = y′|k = k′) (1)

=
expected counts (y = y′ ∧ k = k′)

expected counts (k = k′)
(2)

3.2 Expectation Maximization with Features
The EM with Features algorithm was recently suggested
for computational linguistics problems [4]. It uses logis-
tic regression instead of probability tables to model features,
which can be discrete or continuous, and are observed during
both training and testing. Figure 3 shows the EM with Fea-
tures algorithm. The E step is unchanged from the original
EM algorithm, which gives the probability that the student
has mastered the skill at each practice opportunity. How-
ever, the M step changes substantially: the parameters λ are
now a function of weights β and features f(t). The feature
extraction function f constructs the feature vector f(t) from
the observations (rather than student responses) at the tth

time step For example, the emission probability from Equa-
tion 1 now is represented with a logistic function:

λ(β)y
′,k′

= p(y = y′|k = k′;β) (3)

=
1

1 + exp(−βT · f(t))
(4)

We learn β from data by training a weighted regularized
logistic regression using a gradient-based search algorithm,
called LBFGS. Training logistic regression requires a design
matrix (a matrix with the explanatory variables). Figure 4
visualizes the design matrix we use. Depending on how fea-
tures are encoded in the design matrix, FAST allows three
different types of features: (i) features that are active only
when the student has mastered the skill, (ii) features that
are active only when the student has not mastered the skill,
or (iii) features that are always be active. The number of
features in each type (m1, m2, m3 in Figure 4) can vary. By
design, FAST is able to represent the models in the Knowl-
edge Tracing Family. For example, when FAST uses only
intercept terms as features for the two levels of mastery, it
is equivalent to Knowledge Tracing.

To train the logistic regression, we weight each observation
proportionally to the likelihood of the observation being gen-
erated from the latent states. Therefore each observation is
duplicated during training: the first appearance is weighed
by the probability of mastering at current observation; the
second appearance is weighted by the probability of not mas-
tering at current observation. This likelihood is calculated
during the E step using the forward backward probabilities.
More formally, the instance weight is :

wy′,k′ = p(k = k′|Y;β) (5)

Then, the Maximum Likelihood estimate β∗ is:

β∗ = arg max
β

∑
y,k

wy,k · log λ(β)y,k︸ ︷︷ ︸
data fit

− κ||β||22︸ ︷︷ ︸
regularization

(6)
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Figure 4: Feature design matrix and instance weights of
FAST. During training, observations are duplicated.

where κ is a regularization hyper-parameter to penalize over-
fitting.

4. EXAMPLES
In this section we describe three case studies that demon-
strate FAST’s versatility. The rest of this section is or-
ganized as follows: Section 4.1 describes our experimental
setup; Section 4.2 describes how to model subskills using
FAST; Section 4.3 describes how to implement a Tempo-
ral Item Response Model using FAST; Section 4.4 describes
how to use expert knowledge to improve classification per-
formance.

4.1 Experimental Setup
We used student data collected by an online Java program-
ming learning system called JavaGuide [12]. JavaGuide asks
students to answer the value of a variable or the printed
output of a parameterized Java program after they have ex-
ecuted the code in their mind. JavaGuide automatically
assesses each result as correct or incorrect. The Java pro-
grams are instantiated randomly from a template on every
attempt. Students can make multiple attempts until they
master the template or give up. In total there are 95 differ-
ent templates.

Experts identified skills and subskills from the templates
aided by a Java programming language ontology [11]. Each
item is mapped to one of 19 skills, and may use one to eight
different subskills. Our dataset was collected during three
semesters (Spring 2012 to Spring 2013). It consists of 20,808
observations (from which 6,549 represent the first attempt
of answering an item) from 110 students. The dataset is
very unbalanced since 70% of attempts are correct (60% of
the first attempts are correct).

We evaluated FAST using a popular machine learning met-
ric, the Area Under the Curve (AUC) of the Receiver Op-
erating Characteristic (ROC) curve. The AUC is an overall
summary of diagnostic accuracy. AUC equals 0.5 when the
ROC curve corresponds to random chance and 1.0 for per-
fect accuracy. We reported two ways of calculating the AUC:
(i) overall AUC across all data points of all skills, and (ii)
average AUC of the skills as:

average AUC =
∑
s

AUC(skill s)

# of skills
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Figure 5: Subskill slip probabilities of the skill ArrayList
estimated by FAST. Original Knowledge Tracing estimates
the slip probability as 0.45 for the skill.

For the overall AUC, we reported the 95% confidence inter-
vals with an implementation of the bootstrap hypothesis test
method1, a method that corrects for the non-independence
of the points of the ROC. To train our classifiers, unless
explicitly noted, we modeled each skill independently, and
thus we have different model parameters for each of the 19
skills. In the rest of this section we discuss different feature
sets we used in FAST.

4.2 Multiple Subskills
The original Knowledge Tracing formulation is designed for
fitting a single skill with no subskills. A thorough survey
of how prior ad hoc variants of Knowledge Tracing have
accounted for multiple subskills can be found elsewhere [28].

To model subskills in FAST we just have to define binary
subskill indicator features. In this way, FAST is able to es-
timate slip and guess probabilities as a function of the sub-
skills present in the practice opportunity. Figure 5 compares
the slip probabilities of FAST and Knowledge Tracing for the
subskills that are used in the skill ArrayList. We calculate
the subskill’s slip probability by activating the subskill indi-
cator and intercept in the logistic regression (using Equation
4). The original Knowledge Tracing formulation does not ac-
count for differences in subskills, and therefore estimates a
single skill slip probability as 0.45. We now evaluate how
this improves forecasting performance.

Table 2 compares FAST with different models previously
used in the literature. For these experiments, we use a train-
ing set of a random sample of 80% of the students, and the
rest of the students are used to evaluate the models. The
training and testing set do not have overlapping students.
We use data on all of the attempts students had to solve an
item. We make predictions on all observations of the stu-
dents in the test set, and evaluate them using overall AUC
and mean AUC (when defined). The models we compare
are:

• FAST: FAST using subskill binary indicator features.
We allow FAST to learn different coefficients for guess
and slip for each subskill.
• PFA: Performance Factors Analysis [22] has been shown

to be effective in modeling multiple subskills [8].
• LR-DBN: A Knowledge Tracing Family member that

uses binary subskill indicators as transition features [28].

1http://www.subcortex.net/research/code/

Table 2: Overall AUC for multiple subskills experiments.

Model Overall AUC
FAST .74± .01
PFA .73± .01
LR-DBN .71± .01
KT(single skill) .71± .01
KT(weakest) .69± .01
KT(multiply) .62± .02

• KT: We evaluate different Knowledge Tracing variants:
– single skill: We fit each skill independently (original

formulation with no subskills).
– weakest: We fit each subskill independently, and

then take the minimum of each subskill’s predicted
probability of success as the final prediction. We up-
date the knowledge of this weakest subskill by the ac-
tual response evidence while we update other subskills
by the correct response [8].

– multiply: We fit each subskill independently, and
then multiply each subskill’s predicted probability of
success as the final prediction. We then update the
knowledge of each subskill by the same actual response
evidence [8].

FAST significantly outperforms all the above Knowledge
Tracing variants. In particular, FAST improves the overall
AUC of KT(multiply) by about 19% (significant at p�.01),
and outperforms KT(weakest) by over 7% (significant at
p�.01). We hypothesize that FAST’s better performance
comes from estimating each subskill’s responsibility using a
logistic regression. This avoids Knowledge Tracing variants’
crude assumption that each subskill accounts equally for a
correct or incorrect response during the parameter learn-
ing. FAST also outperforms the LR-DBN by 4% (signifi-
cant at p<.003), which may indicate parameterizing emis-
sion probabilities is better than parameterizing transitions in
this dataset. Improving over the original Knowledge Tracing
formulation (significant at p<.002) suggests that modeling
subskills is important. The fact that LR-DBN does not im-
prove over Knowledge Tracing questions its usefulness. We
do not find statistically significant differences between FAST
and PFA using this feature set in our dataset.

4.3 Temporal Item Response Theory
Knowledge Tracing and classical psychometric paradigms,
such as Item Response Theory (IRT), treat item difficulty
in different ways. The Knowledge Tracing paradigm as-
sumes that all items for practicing a skill have the same
difficulty [17]. For example, when a student struggles on
some items, the paradigm explains it by assuming there is
some subskill(s) that the student has yet to acquire. This
paradigm requires a very careful definition of skills and sub-
skills, which may be a very expensive requirement – skill
definitions are often done manually by an expert. A cheaper
alternative is to discover the skill definitions using data, but
such methods are still a relatively new technology [9].

On the other hand, IRT explicitly models item difficulty and
student ability. For example, the Rasch model [24], the sim-
plest IRT model, assumes that the correctness of a student’s
response on an item depends on the student ability and the
item difficulty. Unfortunately, IRT models are static, and
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Figure 6: Although experts consider the item complexity
increases in latter items, IRT estimates items become easier.
Hexagon colors indicate the number of points that fall within
the region. Binning is necessary to see overlapping points.

therefore, unlike Knowledge Tracing, do not account for stu-
dent learning.

Prior Knowledge Tracing variants have been proposed to
bridge between the Knowledge Tracing and IRT paradigm.
For example, Table 1 summarizes different models that try
to account for different student abilities or item difficulties in
a learning environment. In addition, Latent-Factor Knowl-
edge Tracing (LFKT) [15], a recent single-purpose special-
ized graphical model, bridges between both paradigms. FAST
takes an alternative approach and models Item Response
Theory using feature engineering. Although Rasch Model is
typically formulated with latent variables for item and stu-
dent differences, it can also be estimated using logistic re-
gression with binary variables indicators (sometimes called
dummy variables) for each student and each item [?, ?].

In Figures 6a and 6b we show binned scatter plots of the
item complexity and the estimated IRT difficulty, respec-
tively. The complexity of an item is defined objectively by
experts counting the number of Java concepts used in a ques-
tion.The item difficulty is estimated by a Rasch model. A
higher number of concepts and a higher value of item com-
plexity represent harder items. We run two univariate linear
regressions to fit item complexity and difficulty as a func-
tion of number of practice opportunities. Experts consider
that items practiced later in the tutor are more complex
(β=1.25, p<.0005), while IRT estimates that items become
easier (β=-0.06, p<.0005). The mismatch between IRT dif-
ficulty and item complexity happens because learning is get-
ting confounded with item difficulty. Even though items are
becoming harder, students are learning, and thus getting
better at them, resulting in the underestimation of item dif-
ficulty.

We believe we are the first to show this confounding. It is
unclear if prior work is able to deliver the promise of ac-
counting for student learning in the presence of items with
different difficulty, particularly because prior work only eval-
uates on classification accuracy. Aware of this caveat, we
use FAST using IRT features. As in previous work, we esti-
mated item difficulties using longitudinal data from students
answering items in almost the same order. However, we sug-
gest that future work should calibrate the item difficulty in
a controlled experiment first. This would be an easy modifi-
cation for FAST, as it would only require using a continuous
feature (item difficulty) instead of discrete variables (item
indicators). This would not be easy in previous work – a
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Figure 7: Static IRT (Rasch) and temporal IRT models.

Table 3: Overall and average AUC for IRT experiments.

features
static temporal

all avg. all avg
none .65± .03 .50 .67± .03 .56
+student .64± .03 .59 .67± .03 .60
+item .73± .03 .63 .73± .03 .63
+IRT .76± .03 .70 .76± .03 .70

new ad hoc model would be required.

Figures 7a and 7b show the plate diagram of the Rasch
model and temporal IRT as a Knowledge Tracing Family
member. We do not have to change anything in FAST: our
temporal IRT definition uses student and item binary indi-
cator features. The probability of getting a correct response
y′ of student j for item i on skill q, at the tth time step is:

p(y′q,t|Y ) =
∑

l∈{mastered,
not mastered}

p(kq,t = l|Y ) · Rasch(dq,it , θq,jt , cq,l) (7)

where Y is the corresponding observed sequence. Here, the
Rasch function is parametrized with item difficulty d, stu-
dent ability θ and and a bias c that is specific to whether
or not the student has mastered the skill. Both Knowledge
Tracing and IRT can be recovered from the combined model
with different choices of parameter values. For example,
when abilities and difficulties are zero, the combined model
is equivalent to Knowledge Tracing. When bias terms are
the same (i.e., cq,not mastered = cq,mastered), we get IRT.

Table 3 evaluates FAST using IRT features. To get a better
estimate of item difficulty, for these experiments we only use
data on the first attempt of a student solving an item. The
training set is a random sample of 50% of the students. For
students in the test set, we observe the first half of their prac-
tice opportunities and make predictions in the second half of
their practice opportunities. We compare static models that
assume no learning using logistic regression. For the tem-
poral models we use Knowledge Tracing (with no features)
or FAST (with features). We experiment with the following
feature sets:

• none. No features are considered for classifiers.
• student. We only use student indicator features.
• item. We only use item indicator features.
• IRT. We use both item and student indicator features.

FAST using IRT features outperforms the overall AUC of
Knowledge Tracing by over 13% (significant at p�.01) and
the mean AUC of Knowledge Tracing by 25%. Using item
features in FAST improves the overall AUC of Knowledge
Tracing by about 9% (significant at p�.01) and the mean
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AUC by 13%. The Follow-up work [?] confirms in other
datasets that FAST with IRT features is able to significantly
outperform Knowledge Tracing.The overall AUC of Knowl-
edge Tracing is not significantly different from that of logistic
regression with no features (p>.2). The difference between
the mean and overall AUC of these models with no features
should be accounted by the expert knowledge introduced
by the expert’s skill definition. These results coincide with
previous work: adding item difficulty and student ability
features can greatly increase the performance of Knowledge
Tracing. However we do not find any significant differences
between the temporal and static models. This may be be-
cause the item difficulty is confounded with learning.

Even if Knowledge Tracing with IRT features does not out-
perform IRT, such a model could be preferable to IRT if
it allows modeling student learning. We estimate student
learning by subtracting the probability of mastery at the
first practice opportunity from the probability of mastery at
the last practice opportunity for each student-skill sequence:

learning ≡ p(kq,T = mastered|Y )− p(kq,0 = mastered|Y )

Figure 8 shows the box plot of average learning of students
across all skills for the models. Both Knowledge Tracing
and FAST+student are able to capture student learning
from data much better than models that account for item
difficulty. In our literature review from Table 1, none of
the methods reported both a comparison with IRT and this
analysis of learning. We do not know if our results are typi-
cal, but they suggest that item difficulty is confounded with
learning. Future work should study using FAST with item
difficulties calibrated in a controlled experiment to avoid
confounding with item difficulties.

4.4 Expert Knowledge
In this section we perform feature engineering to improve
student performance prediction. We use features that pre-
vious work has found to be useful to predict student per-
formance [10, 20, 22, 26]. More concretely, we demonstrate
FAST with three types of features: continuous features that
indicate the number of prior practice opportunities where
the student answered (i) correctly, and (ii) incorrectly the
item template, and (iii) item indicator features. The item
indicator features correspond to a binary indicator per item
(95 indicator features in total). We use the same experi-
mental setup of Section 4.2, which is a non-overlapping set

Table 4: Overall and average AUC for item practice feature
experiments

Model all avg.
FAST+item+practice .77± .01 .73
FAST+item .75± .01 .68
FAST+practice .72± .01 .67
PFA .70± .01 .60
KT .71± .01 .58

of students for training and testing, and data from all at-
tempts. Table 4 compares the following models:
• FAST+item+practice uses item indicator features and

the numbers of prior correct and incorrect practices fea-
tures for each item. The coefficients of item practice
performance features can be interpreted as learning rates
from correct and incorrect practices of an item.
• FAST+item uses item indicator features.
• FAST+practice uses only the numbers of prior correct

and incorrect practices as features.
• PFA (Perfomance Factors Analysis) model uses skill in-

dicator, the numbers of prior correct and incorrect prac-
tices feature of the skill as features.
• KT is the original Knowledge Tracing without features.

The most predictive model is FAST using item difficulty and
prior practice features, which outperforms the overall AUC
of KT over 8% (significant at p�.01) and outperforms PFA
by 10% (p�.01). Its mean AUC also beats KT by 26%
and PFA by 22%. The best model outperforms FAST with
only item indicator features with an improvement of 3% of
overall AUC (significant at p<.005) and 7% of mean AUC,
indicating that adding item practice features can provide
significant gain over just using item difficulty parameters.
When FAST uses only practice features we do not find a
significant difference from PFA and Knowledge Tracing in
terms of overall AUC (p>.1), but it shows improvement us-
ing the mean AUC metric – improving PFA by 12% and
Knowledge Tracing by 16%. Future research should inves-
tigate whether this discrepancy between the overall AUC
and mean AUC is because of the distribution of common
and rare skills or because of the quality of the item to skill
mapping. Our results suggest that feature engineering can
improve the forecasting quality in Knowledge Tracing.

5. EXECUTION TIME
We now study the execution time of learning the param-
eters and making predictions. As a comparison, we use a
popular tool that facilitates the creation of ad hoc Knowl-
edge Tracing variants called BNT-SM [6]. We conduct the
experiments on a contemporary laptop (1.8 GHz Intel Core
i5 CPU and 4GB RAM). We compare FAST and BNT-SM
under two settings: (i) tracing single skills as the standard
Knowledge Tracing and (ii) tracing multiple subskills. For
the Knowledge Tracing experiment, Figure 9 shows the exe-
cution time of both algorithms varying the dataset size, and
FAST is about 300 times faster. For the multiple subskill ex-
periment, we compare with LR-DBN, a recent method [28]
implemented on BNT-SM. We use the authors’ implemen-
tation of LR-DBN. LR-DBN takes about 250 minutes while
FAST only takes about 44 seconds on 15,500 datapoints. We
didn’t report results varying dataset since LR-DBN requires
much time. The execution time of LR-DBN is comparable
to the one reported by LR-DBN authors.
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Figure 9: Execution time (in minutes) of FAST and BNT-
SM with different sizes of dataset on single skill experiment

In both experiments, FAST’s parameter fitting time can be
up to 300 times faster — while keeping the same or better
performance in terms of overall AUC (significant at p<.05).
Our implementation of FAST is in Java, while BNT-SM is
implemented in Matlab. It is contentious to measure the ef-
fect of the programming language in the experiment. How-
ever, some informal benchmarks 2 suggest that Matlab is in
fact faster for scientific computations.

6. RELATION TO PRIOR WORK
The likelihood functions of FAST and Knowledge Tracing
are non-convex. Therefore, parameters discovered might
only be local optima, not a global solution. In this paper
we only experiment with the Expectation Maximization al-
gorithm, but future work may compare multiple fitting pro-
cedures to avoid local solutions [8]. Prior work [2] has also
used regression as a post-processing step after Knowledge
Tracing. This is different from FAST’s approach of jointly
training (logistic) regression and Knowledge Tracing. We
leave for future work the analysis and comparison of FAST
and the post-hoc analysis.

Table 5 compares FAST with models from the literature
whether they allow general features, slip and guess proba-
bilities, time, and multiple subskills. For the time dimension
we consider whether the models consider recency (R), order-
ing (O) and learning (L) or none. The Rasch model [24] and
Performance Factor Analysis (PFA) [22] use logistic regres-
sion and may model arbitrary features. However, Rasch can
not account for student learning or multiple subskills. Al-
though PFA is able to fulfill these two cases, it does not
consider recency (a correct response following an incorrect
response is modeled in the same way as an incorrect response
following a correct response), or ordering (a question that
was answered incorrectly recently is modeled in the same
way as if it were answered incorrectly two weeks ago). Fur-
thermore, PFA does not model slip and guess probabilities.

Knowledge Tracing [7] has a robust mechanism to model
time, but lacks the ability to allow arbitrary features and
multiple subskills. LR-DBN is a variant of Knowledge Trac-
ing that uses logistic regression [28], yet it is proposed for
modeling subskills but not general features. Moreover, in
Section 4 we report experiments in which FAST has better
predictive performance than LR-DBN. Unlike prior work,
FAST is a general method that is able to fulfill a wide range
of use cases.

2https://modelingguru.nasa.gov/docs/DOC-1762

Table 5: Model Comparison

Model features
slip /
guess

time
multiple
subskills

FAST X X R,O,L X
LR-DBN X R,O,L X
KT X R,O,L

PFA X L X
Rasch X

7. CONCLUSION
In this paper we identified a family of models, the Knowledge
Tracing Family, that have similar graphical model struc-
tures. The graphical model structures of the Knowledge
Tracing Family have been reinvented multiple times for dif-
ferent applications. We presented FAST as a flexible and
efficient method that allows representing all of the models
in the Knowledge Tracing Family. FAST uses logistic regres-
sion to model general features in Knowledge Tracing. Previ-
ous student modeling frameworks [6] for Knowledge Tracing
are inefficient because their time and space complexity is
exponential in the number of features. FAST is very effi-
cient, and its complexity only grows linearly to the number
of features.

Although theoretically FAST should be very similar to the
conventional Knowledge Tracing Family implementations,
future work may run a more detailed comparison. A lim-
itation of this study is that we did not compare against all
of the previous implementations of the Knowledge Tracing
Family.

A secondary contribution of this paper is that we identified
a problem of prior published work of learning item diffi-
culty from within Knowledge Tracing. The resulting item
difficulty estimates are confounded with learning. FAST is
also susceptible to this problem, and in future work we will
use FAST with item difficulty estimates calibrated with a
controlled study. Additionally, future work may study al-
ternative ways of training FAST [4] and discovering an item
to skill mapping.

We demonstrated FAST’s generality with three use cases
that have been shown to be important in prior work: (i)
modelling subskills, (ii) incorporating IRT features in Knowl-
edge Tracing, and (iii) using features designed by experts. In
our experiments we see improvements of FAST over Knowl-
edge Tracing by up to 13% in mean AUC of skills, and 25% in
the overall AUC. When and how feature engineering can as-
sist in student modeling depends on the characteristics of the
data and the experience of domain experts. FAST provides
high flexibility in utilizing features, and as our studies show,
even with simple general features, FAST presents much im-
provement over Knowledge Tracing. We expect more thor-
ough feature engineering for FAST in the future should pro-
vide greater improvement. Moreover, FAST is efficient for
model fitting and inferencing — FAST can be 300 times
faster than models created in other general purpose student
modeling toolkits while keeping the same or better classifier
performance.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 90



Acknowledgements
This research is supported by Pearson3 and the Advanced
Distributed Learning Initiative4. We also thank the 2013
LearnLab Summer School for enabling the cooperation.

8. REFERENCES
[1] A. Agresti. Computing conditional maximum

likelihood estimates for generalized rasch models using
simple loglinear models with diagonals parameters.
Scandinavian Journal of Statistics, pages 63–71, 1993.

[2] R. Baker, A. Corbett, and V. Aleven. More accurate
student modeling through contextual estimation of
slip and guess probabilities in bayesian knowledge
tracing. In B. Woolf, E. Aı̈meur, R. Nkambou, and
S. Lajoie, editors, ITS, volume 5091 of Lecture Notes
in Computer Science, pages 406–415. Springer, 2008.

[3] J. E. Beck, K.-m. Chang, J. Mostow, and A. Corbett.
Does help help? introducing the bayesian evaluation
and assessment methodology. In Intelligent Tutoring
Systems, pages 383–394. Springer, 2008.

[4] T. Berg-Kirkpatrick, A. Bouchard-Côté, J. DeNero,
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