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ABSTRACT 

Research illustrating that student achievement is affected by teachers’ knowledge 

advocates for K-8 teachers to be knowledgeable regarding prerequisite algebra concepts: 

(1) numbers (numerical operations), (2) ratios/proportions, (3) the order of operations, (4) 

equality, (5) patterning, (6) algebraic symbolism (including letter usage), (7) algebraic 

equations, (8) functions, and (9) graphing. The theoretical framework for the knowledge 

for teaching mathematics built for this study suggests that the mathematical content 

knowledge needed for teaching consists of specialized content knowledge in addition to 

common content knowledge. Specialized mathematical content knowledge extends 

beyond solving mathematical problems to encompass how and why mathematical 

procedures work and an awareness of structuring and representing mathematical content 

for learners.  

 

The effects of an undergraduate mathematics content course for elementary 

education students on preservice teachers’ common and specialized content knowledge of 

prerequisite algebra concepts was investigated, using a pre-experimental one-group 

pretest-posttest design. A quantitative, 51-item, multiple-choice instrument, developed 

specifically to measure both types of content knowledge with respect to prerequisite 

algebra concepts, was constructed from the Learning Mathematics for Teaching Project’s 

Content Knowledge for Teaching Mathematics Measures question bank. This instrument 

was administered to all students enrolled in Mathematics for Elementary Teachers I (n = 

48), at Montana State University, during the fall semester of 2006.  

 

Matched pairs t-tests, comparing pretest and posttest scores within the single 

sample, show significant gains (p = .000) in both common and specialized content 

knowledge and in all tested aspects of prerequisite algebra knowledge (numbers and 

equations/functions). Results also suggest a significant correlation (r = .716, p = .000) 

between preservice teachers’ common and specialized content knowledge. Lastly, a one-

parameter linear model was constructed to predict the number of participants to 

incorrectly answer each item, based on item difficulty. Items missed by notably more or 

less students than predicted were identified and analyzed. The one item students 

performed better than expected on addresses common content knowledge regarding a 

linear graph. The set of troublesome items address both common and specialized content 

knowledge of reading, writing, and representing functions in a variety of contexts and 

using ratios to write and solve proportions. 
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CHAPTER 1 

THE PROBLEM 

Introduction 

Algebra 

Ever since algebra became a college entrance requirement at Harvard University 

in 1820, it has had the ability to establish the educational opportunities available to 

college-intending students (Moses, 1994; Moses, Kamii, Swap, & Howard, 1989; 

Picciotto & Wah, 1993). The addition of algebra to increasingly more district and state 

high school graduation requirements has created a need for all students, no longer just the 

college-bound, to be algebra proficient (Fey, 1989). Despite the significance of algebra in 

students’ educations and futures, the algebra achievement of U.S. students on the 

National Assessment of Educational Progress (NAEP) is poor (Chazan & Yerushalmy, 

2003). 

To address this issue, researchers, teachers, and curriculum experts have worked 

to identify the prerequisite content areas believed to contribute to students’ abilities to 

succeed in algebra. Specifically, the Southern Regional Education Board (SREB) 

produced a list of 12 algebra-specific skills, Readiness Indicators, which classify the prior 

knowledge necessary for success in Algebra I (Bottoms, 2003). The list was developed 

by mathematics education experts, but not based upon research. Therefore, similarities 

and differences between relevant research and the Readiness Indicators were investigated 
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(Welder, 2006). The results of this analysis indicated that nine concepts that are 

prerequisite to success in a first algebra course are supported by the research:  

1. Numbers and numerical operations (Booth, 1984, 1986; Gallardo, 2002; 

Kieran, 1988; Rotman, 1991; Wu, 2001) 

2. Ratios/proportions (Post, Behr, & Lesh, 1988) 

3. The order of operations (Kieran, 1979, 1988; Pinchback, 1991) 

4. Equality (Behr, Erlwanger, & Nichols, 1976, 1980; Falkner, Levi, & 

Carpenter, 1999; Herscovics & Kieran, 1980; Kieran, 1981, 1989) 

5. Patterning (Watson, 1990) 

6. Algebraic symbolism (Behr et al., 1976, 1980; Booth, 1984, 1986; Kieran, 

1988, 1992; Küchemann, 1981) including letter usage (Booth, 1984, 1986, 

1988; Küchemann, 1978, 1981; Macgregor & Stacey, 1997; Sleeman, 1984; 

Usiskin, 1988; Watson, 1990) 

7. Algebraic equations (Clement, Narode, & Rosnick, 1981; Wollman, 1983) 

8. Functions (Brenner et al., 1995) 

9. Graphing (Brenner et al., 1995, Chazan & Yerushalmy, 2003; Kieran, 1992; 

Leinhardt, Zaslavsky, & Stein, 1990) 

The Principles and Standards for School Mathematics published by the National 

Council of Teachers of Mathematics recommend that these nine concepts, identified 

above as prerequisite to algebra, are covered within the K-8 mathematics curriculum 

(NCTM, 2000). Elementary teachers must therefore be prepared to effectively teach these 

concepts to their students. 
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Knowledge Needed for Effective Teaching 

A teacher’s knowledge is one of the biggest influences on classroom atmosphere 

and on what that teacher’s students learn (Fennema & Franke, 1992). In a meta-analysis 

of 60 education production function studies, variables used to represent teacher quality 

(such as teacher ability, knowledge, and education level) were found to have positive 

effects on student achievement (Greenwald, Hedges, & Laine, 1996). Furthermore, the 

work of Hill, Rowan, and Ball (2005) unveiled that teachers with increased mathematical 

knowledge for teaching produced significantly larger gains in student achievement, even 

though the study controlled for many other variables (including student socioeconomic 

status, student absence rate, teacher credentials, teacher experience, and average length of 

mathematics lesson). Due to its proven influence, the mathematical knowledge important 

for the work of teaching has become a significant issue in mathematics education 

(Stylianides & Ball, 2004). 

Over the past two decades, researchers have attempted to identify and categorize 

the different facets of knowledge obtained and/or required by effective teachers (Ball, 

2003, 2006; Hill & Ball, 2004; Hill, Schilling, & Ball, 2004; Rowan, Schilling, Ball, & 

Miller, 2001; Shulman, 1986). No one disputes that teachers need a thorough 

understanding of the subject matter they teach; however, focus has been redirected to the 

additional types of knowledge needed specifically by teachers, as compared to other 

professionals in their subject area. This work has proposed varying definitions and 

theoretical frameworks for the knowledge needed for effective teaching. Building off the 

efforts of Shulman and synthesizing the subsequent work, a theoretical framework 
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categorizing the knowledge needed for teaching mathematics was developed and guided 

the remainder of this study. Definitions of key framework terms follow immediately; 

however, the framework creation will be detailed in Chapter 2 (pp. 34-38). 

Theoretical Framework for Knowledge for Teaching Mathematics 

I. Mathematical Knowledge for Teaching 

A. Common Content Knowledge (CCK) 

B. Pedagogical Content Knowledge 

i. Specialized Content Knowledge (SCK) 

ii. Knowledge of Students’ Conceptual Thinking 

iii. Knowledge of Content and Teaching 

iv. Curricular Knowledge 

 

II. General Pedagogical Knowledge for Teaching 

Definition of Framework Terms 

• Knowledge for Teaching Mathematics – all of the knowledge required to 

effectively teach mathematics. 

• Mathematical Knowledge for Teaching – all of the content-specific 

knowledge required to effectively teach mathematics. 

• Common Content Knowledge (CCK) – the knowledge of mathematics that 

allows one to successfully solve mathematical problems. 

• Pedagogical Content Knowledge – the knowledge of mathematics that allows 

one to successfully teach mathematical concepts. 
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• Specialized Content Knowledge (SCK) – the knowledge of how and why 

mathematical procedures and rules work, along with the knowledge of 

structuring and representing mathematical content. This knowledge also 

includes the ability to appraise students’ ideas and computations and analyze 

the mathematical validity of unconventional student methods.  

• Knowledge of Students’ Conceptual Thinking – the knowledge of how 

students analyze and comprehend mathematical ideas. This knowledge entails 

an understanding of common student conceptions, misconceptions, 

difficulties, errors, and interests in the field of mathematics.  

• Knowledge of Content and Teaching – the knowledge of how to select and 

implement mathematically specific pedagogical strategies (e.g. analogies, 

illustrations, examples, explanations, demonstrations, manipulatives) to best 

explain and/or represent mathematical concepts in various instructional 

situations.  

• Curricular Knowledge – the knowledge of how the mathematical concepts 

students are learning relate to the various topics being concurrently addressed 

in other courses, as well as a holistic awareness of the pertinent mathematics 

curriculum. 

• General Pedagogical Knowledge for Teaching – the knowledge of universal 

educational strategies and principals required to be an effective teacher, 

including general learning theories and interpersonal skills. 
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Development of Elementary Teachers’ Mathematical Knowledge for Teaching 

“Improving the mathematics learning of every child depends on making central 

the learning opportunities of our teachers,” (Ball 2003, p. 9). According to the theoretical 

framework for knowledge for teaching mathematics, elementary teachers require 

opportunities to develop two distinct types of mathematical content knowledge 

concerning prerequisite algebra concepts: common content knowledge and specialized 

content knowledge.  

In the preparation of elementary teachers, mathematical content knowledge is 

generally addressed throughout one or two required undergraduate mathematics content 

courses. These courses, specifically designed for preservice elementary teachers, tend to 

focus on the enhancement of common content knowledge. However, numerous scholars 

argue that teacher educators have both the responsibility and capability to improve 

preservice teachers’ pedagogical content knowledge within collegiate course settings 

(Battista, 1994; Stacey et al., 2001; Chen & Ennis, 1995; Manouchehri, 1996; Miller, 

1999; Davis & McGowen, 2001). Lee, Meadows, and Lee (2003) claim that in order for 

preservice teachers to be prepared to teach quality mathematics in their prospective 

classrooms, teacher educators should ensure that preservice teachers have opportunities 

to develop mathematical knowledge that is specific to the needs of teachers.  

Since undergraduate mathematics content courses for elementary education 

majors are the only required content courses that will address the mathematical content 

that preservice teachers will teach, it is vital that they address not only common content 

knowledge of prerequisite algebra concepts, but also the specialized content knowledge 
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needed for teaching them. Therefore, this study investigated the ability of a collegiate 

content course for elementary education majors to develop preservice teachers’ common 

and specialized content knowledge of prerequisite algebra skills. 

Statement of the Problem 

To succeed in algebra, it is vital that students master prerequisite algebra concepts 

throughout their K-8 mathematics education. Hence, it is necessary for elementary 

teachers to be knowledgeable regarding this material. To effectively teach these topics to 

children, elementary teachers’ knowledge must surpass the common content knowledge 

of prerequisite algebra concepts, to include the specialized content knowledge necessary 

for teaching them. Collegiate mathematics content courses can address and enhance both 

of these aspects of the mathematical knowledge needed for teaching prerequisite algebra 

concepts. Therefore, the current study investigated the effects of an undergraduate 

mathematics content course on preservice elementary teachers’ common and specialized 

content knowledge of prerequisite algebra concepts.  

The purpose of this study was to: (1) develop a quantitative instrument viable for 

successfully analyzing preservice teachers’ common and specialized content knowledge 

of prerequisite algebra concepts, and (2) implement the developed instrument to measure 

the effects of an undergraduate mathematics content course for elementary education 

majors on preservice teachers’ common and specialized content knowledge of 

prerequisite algebra concepts. 
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It is important to note that the knowledge for teaching mathematics entails 

knowledge of students’ conceptual thinking, knowledge of content and teaching, 

curricular knowledge, and general pedagogical knowledge for teaching, in addition to 

mathematical content knowledge (common and specialized). These additional categories 

of knowledge for teaching mathematics are, however, beyond the scope of this study and 

were not examined. 

Research Questions 

The current study focused on several research questions, all with respect to an 

undergraduate first-semester elementary education mathematics content course. The 

development and implementation of a quantitative instrument capable of measuring 

teachers’ mathematical content knowledge (both common and specialized) of prerequisite 

algebra constructs addressed the following questions: 

1. What effects does this course have on preservice teachers’ mathematical 

content knowledge of prerequisite algebra concepts? 

2. What effects does this course have on preservice teachers’ mathematical 

content knowledge of individual prerequisite algebra constructs (number 

concepts and equation/function concepts)? 

3. What effects does this course have on preservice teachers’ common content 

knowledge and specialized content knowledge of prerequisite algebra 

concepts? 
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4. What relationship, if any, exists between preservice elementary teachers’ 

common and specialized content knowledge of prerequisite algebra concepts?  

5. What patterns, if any, exist among items missed by more or less preservice 

elementary teachers than predicted on the instrument measuring mathematical 

content knowledge of prerequisite algebra concepts? 

Significance of the Study 

The results of this study have potential to aid collegiate mathematics educators in 

understanding the common and specialized content knowledge of prerequisite algebra 

concepts that preservice teachers obtain from their mathematics content courses. This 

understanding can assist those responsible for developing appropriate curricula for 

preservice teachers’ mathematics content courses. Additionally, prerequisite algebra 

concepts represent only a small part of the body of mathematical knowledge needed by 

elementary teachers (NCTM, 2000). The methods and results of this investigation may 

serve as a basis for further work to examine other areas of mathematical knowledge 

required of elementary teachers. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

Introduction 

Three distinct sections organize the following review of literature. The first 

section, Prerequisite Knowledge for the Learning of Algebra, includes research that 

addresses knowledge considered prerequisite for success in algebra, as well as 

misconceptions of algebra students. This literature was reviewed in an effort to identify 

concepts students need to be proficient in, prior to entering and being successful in their 

first algebra course. Nine prerequisite algebra topics were justifiably identified. The 

second section, Knowledge Needed for Teaching Mathematics, addresses the 

multifaceted mathematical knowledge that teachers need to effectively teach 

mathematics. This discussion includes a theoretical framework for the knowledge needed 

for teaching mathematics, along with justification for its development. The third and final 

section, Development and Measurement of Specialized Content Knowledge, provides 

rationalization for addressing specialized content knowledge (in addition to common 

content knowledge) in collegiate teacher education programs. In addition, appropriate 

methods for testing such knowledge, including the basis for the quantitative measure that 

will be designed and utilized in this study, are discussed. Brief summaries are provided at 

the end of each section, in addition to an overall summary located at the end of the 

chapter. 
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Prerequisite Knowledge for the Learning of Algebra 

Significance of Algebra 

Algebra anchored its existence in the secondary school mathematics curriculum 

after it became a college entrance requirement at Harvard University in 1820 (Rachlin, 

1989). Ever since, algebra has had the ability to determine the educational opportunities 

available to college-intending students (Moses, 1994; Moses et al., 1989; Picciotto & 

Wah, 1993). Algebra can separate people from further progress in mathematics-related 

fields of study (Davis, 1995). However, more and more districts and states have added 

algebra to their high school graduation requirements causing the need for all students, no 

longer just the college-bound, to be algebra proficient. For the students who do continue 

their educations past high school, algebra concepts are necessary for studying every 

branch of mathematics, science, and technology (Fey, 1989).  

Despite the significance of algebra in students’ educations and futures, the algebra 

achievement of U.S. students on the National Assessment of Educational Progress 

(NAEP) is poor (Chazan & Yerushalmy, 2003). In fact, 53.8% of all responses given on 

Remedial Intermediate Algebra exams by a group of freshman college students were 

incorrect (Pinchback, 1991). Pinchback categorized an alarming 40.2% of these incorrect 

responses as resulting from errors caused by lack of prerequisite knowledge. If lack of 

preparation for algebra courses is causing poor algebra achievement, then it is essential to 

identify content whose mastery is required for the learning of algebra.  
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Defining Algebra 

According to Booth (1986), the main purpose of algebra is to learn how to 

represent general relationships and procedures; for through these representations, a wide 

range of problems can be solved and new relationships can be developed from those 

known. However, students tend to view algebra as little more than a set of arbitrary 

manipulative techniques that seem to have little, if any, purpose to them (Booth, 1986). 

Perhaps the typical algebra curriculum focuses too heavily on simplification and 

manipulation, rather than the generalized ideas that create the basis of algebra. 

Interestingly, the content included in high school algebra has changed very little over the 

past century (Kieran, 1992). 

Standard first-year algebra classes generally include: operations with positive and 

negative numbers; evaluation of expressions; solving of linear equations, linear 

inequalities and proportions; age, digit, distance, work and mixture word problems; 

operations with polynomials and powers; factoring of trinomials, monomial factoring, 

special factors; simplification and operations with rational expressions; graphs and 

properties of graphs of lines; linear systems with two equations in two variables; 

simplification and operations with square roots; and solving quadratic equations by 

factoring and completing the square (Usiskin, 1987). More concisely, high school algebra 

can be outlined in five major themes: (a) variables and simplification of algebraic 

expressions, (b) generalization, (c) structure, (d) word problems, and (e) equations 

(Linchevski, 1995). 
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Readiness Indicators 

There has been debate regarding the exact identification of concepts needed by a 

student prior to entering his or her first Algebra course. In one of the most recent papers 

addressing the issue of identifying prerequisite knowledge for the learning of algebra, the 

Southern Regional Education Board (SREB) created a panel of classroom teachers and 

curriculum experts (from the Educational Testing Service) to analyze curriculum 

materials (Bottoms, 2003). Using their professional expertise, members worked 

cooperatively to identify 17 mathematical concepts, named Readiness Indicators, 

believed to classify the skills necessary for a student to be successful in learning Algebra 

I. The first five Readiness Indicators address general processing skills vital to learning all 

mathematics. The next 12 Readiness Indicators, however, are content-specific to the 

learning of algebra (Bottoms, 2003) and are therefore most pertinent to the research topic 

at hand; they are listed below. 

1. Read, write, compare, order, and represent in a variety of forms: integers, 

fractions, decimals, percents, and numbers written in scientific and 

exponential notation. 

2. Compute (add, subtract, multiply, and divide) fluently with integers, fractions, 

decimals, percents, and numbers written in scientific notation and exponential 

form, with and without technology. 

3. Determine the greatest common factor, least common multiple, and prime 

factorization of numbers. 
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4. Write and use ratios, rates and proportions to describe situations and solve 

problems. 

5. Draw with appropriate tools and classify different types of geometric figures 

using their properties. 

6. Measure length with appropriate tools and find perimeter, area, surface area, 

and volume using appropriate units, techniques, formulas, and levels of 

accuracy. 

7. Understand and use the Pythagorean relationship to solve problems. 

8. Gather, organize, display, and interpret data. 

9. Determine the number of ways an event can occur and the associated 

probabilities. 

10. Write, simplify, and solve algebraic equations using substitution, the order of 

operations, the properties of operations, and the properties of equality. 

11. Represent, analyze, extend, and generalize a variety of patterns. 

12. Understand and represent functions algebraically and graphically. 

The SREB developed the list of Readiness Indicators through much deliberation 

among experts in the field of mathematics education, however they were not based upon 

results of research (Bottoms, 2003). In an effort to justify this work, Welder (2006) 

reviewed literature addressing prerequisite knowledge for the learning of algebra, as well 

as misconceptions of algebra students. Although the latter does not directly identify 

prerequisite knowledge, research regarding deficiencies and difficulties of algebra 

students can provide insight into areas where algebra students are unprepared. Therefore, 
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this type of research is considered relevant to the discussion of prerequisite knowledge. 

The following review of literature regarding prerequisite algebra concepts is categorized 

by algebraic content areas as found in the literature. 

Vocabulary  

Miller and Smith (1994) identified prerequisite vocabulary for the learning of 

algebra, due to their belief that lack of prerequisite vocabulary contributes to students’ 

failure to retain problem-solving skills learned in previous mathematics courses. By 

reviewing course textbooks and interviewing mathematics instructors, they created a 60-

item list of vocabulary terms deemed prerequisite for Intermediate Algebra and College 

Algebra students. This list was then narrowed to 30 items, with the assistance of 44 

college mathematics professors from 19 different colleges. The selected vocabulary 

includes geometric terms such as perimeter, area, volume, and radius, as well as more 

traditional algebraic terms such as factor, linear equation, slope, and y-intercept. Miller 

and Smith then investigated Intermediate and College Algebra students’ vocabulary, by 

administering a multiple-choice and true-false vocabulary test; students knew an average 

of 15 of the 30 terms. 

Numbers 

Other researchers have focused on the value of understanding numbers prior to 

algebra introduction (Booth, 1984, 1986; Gallardo, 2002; Kieran, 1988; Rotman, 1991; 

Wu, 2001). According to Watson (1990), a better understanding of number basics would 

give students a stronger ability to handle algebraic operations and manipulations.  What 
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types of numbers need to be studied prior to learning algebra? The SREB’s Readiness 

Indicator number 1 focuses on students’ ability to read, write, compare, order, and 

represent a variety of numbers, including integers, fractions, decimals, percents, and 

numbers in scientific notation and exponential form (Bottoms, 2003). Some of these 

forms have also been mentioned in research addressing prerequisite number knowledge 

for the learning of algebra. 

Gallardo (2002) focused on the fact that the transition from arithmetic to algebra 

is where students are first presented with problems and equations that have negative 

numbers as coefficients, constants, and/or solutions. Therefore, she believes that students 

must have a solid understanding of integers in order to comprehend algebra. Lack of this 

understanding will affect students’ abilities to solve algebraic word problems and 

equations. However, Gallardo’s research showed that 12- and 13-year-old students do not 

usually understand negative numbers to the fullest possible extent.  

Misconceptions of negative numbers were identified in earlier research done by 

Gallardo and Rojano (1988; cited in Gallardo, 2002) while investigating how 12- and 13-

year-old beginning algebra students acquire arithmetic and algebraic language. One 

major area of difficulty involved the nature of numbers. Specifically, students had 

troubles conceptualizing and operating with negative numbers in the context of 

prealgebra and algebra. Therefore, Gallardo (2002) argues that while students are 

learning the language of algebra, it is imperative that they understand how the numerical 

domain can be extended from the natural numbers to the integers.  
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Kieran (1988) also found misunderstandings regarding integers to affect the 

success of algebra students in grades 8-11. During interviews with Kieran, students who 

had taken at least one year of algebra made computational equation-solving errors 

involving the misuse of positive and negative numbers. Furthermore, when these students 

were required to use division as an inverse operation, they tended to divide the larger 

number by the smaller, regardless of the division that was actually required within the 

operation. Therefore, students’ errors extended into the division of integers, which 

implies a lack of understanding of fractions.  

An opinion article regarding how to prepare students for algebra further supports 

the inclusion of fractions as prerequisite knowledge for the learning of algebra. 

According to Wu (2001), fraction understanding is vital to a student’s transformation 

from computing arithmetic calculations to comprehending algebra. Wu believes that K-

12 teachers are not currently teaching fractions at a deep enough level to prepare students 

for algebra. In fact, she believes that the study of fractions could and should be used as a 

way of preparing students for studying generality and abstraction in algebra.  

Fractions were also stressed when Rotman (1991) chose number knowledge as a 

prerequisite arithmetic skill for learning algebra. During a research project that mounted 

evidence against the assumption that arithmetic knowledge is prerequisite for successful 

algebra learning, Rotman constructed a list of arithmetic skills he considers as 

prerequisite to algebra. Based on his experiences as a teacher, Rotman argues that algebra 

students need to understand the structure behind solving applications, the meaning of 

symbols used in arithmetic, the order of operations, and basic properties of numbers 
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(especially fractions). Of course, in order to operate with fractions students are required 

to know basic number theory ideas including least common multiple. Therefore, the 

necessity of fraction knowledge partially supports Readiness Indicator number 3, which 

states that students need to be able to determine the greatest common factor, least 

common multiple, and prime factorization of numbers (Bottoms, 2003).  

Proportionality 

Fractions commonly appear in beginning algebra in the form of proportions, 

which provide wonderful examples of naturally occurring linear functions. Because of 

this, Post et al. (1988) feel that proportionality has the ability to connect common 

numerical experiences and patterns, with which students are familiar, to more abstract 

relationships in algebra. Proportions can also be used to introduce students to algebraic 

representation and variable manipulation in a way that parallels their knowledge of 

arithmetic.  

In fact, proportions are useful in a multitude of algebraic processes, including 

problem solving, graphing, translating, and using tables, along with other modes of 

algebraic representation. Due to its vast utility, Post et al. (1988) consider proportionality 

to be an important contributor to students’ development of pre-algebraic understanding. 

Similarly, Readiness Indicator number 4 focuses on the importance of ratios, rates, and 

proportions in the study of algebra (Bottoms, 2003).  

Proportional reasoning requires a solid understanding of several rational number 

concepts including order and equivalence, the relationship between a unit and its parts, 

the meaning and interpretation of ratio, and various division issues (Post et al., 1988). 
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Therefore, these concepts could be considered, along with proportional reasoning, 

prerequisite knowledge for the learning of algebra.  

Computations 

In addition to understanding the properties of numbers, algebra students need to 

understand the rules behind numerical computations, as stated in Readiness Indicator 

number 2 (Bottoms, 2003). Computational errors cause many mistakes for algebra 

students, especially when simplifying algebraic expressions. Booth (1984) claims 

elementary algebra students’ difficulties are caused by confusion surrounding 

computational ideas, including inverse operations, associativity, commutativity, 

distributivity, and the order of operations convention. These misconstrued ideas are 

among basic number rules essential for algebraic manipulation and equation solving 

(Watson, 1990). The misuse of the order of operations also surfaced within an example of 

an error made by collegiate algebra students that Pinchback (1991) categorized as result 

of lack of prerequisite knowledge. Other errors deemed prerequisite occurred while 

adding expressions with radical terms and within the structure of long division while 

dividing a polynomial by a binomial (Pinchback, 1991).  

Mentioned by Rotman (1991) as a prerequisite arithmetic skill, the order of 

operations is also included in Readiness Indicator number 10 (Bottoms, 2003). In fact, 

this convention has been found to be commonly misunderstood among algebra students 

in junior high, high school, and even college (Kieran, 1979, 1988; Pinchback, 1991). The 

order of operations relies on bracket usage; however, algebra requires students to have a 

more flexible understanding of brackets than in arithmetic. Therefore, according to 
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Linchevski (1995), prealgebra should be used as a time to expand students’ conceptions 

of brackets. 

Kieran (1979) investigated reasons accounting for the common misconception of 

the order of operations and alarmingly concluded that students’ issues stem from a much 

deeper problem than forgetting or not learning the material properly in class. The junior 

high school students, with which Kieran worked, did not see a need for the rules 

presented within the order of operations. Kieran argues that students must develop an 

intuitive need for bracket application within the order of operations, before they can learn 

the surrounding rules. This could be accomplished by having students work with 

arithmetic identities, instead of open-ended expressions (Kieran, 1979).  

Although teachers see ambiguity in solving an open-ended string of arithmetic 

operations, such as 

! 

2 + 4 " 5 , students do not. Students tend to solve expressions based on 

how the items are listed, in a left-to-right fashion, consistent with their cultural tradition 

of reading and writing English. Therefore, the rules underlying operation order actually 

contradict students’ natural way of thinking. However, Kieran (1979) suggests that if an 

equation such as 

! 

3" 5 =15 were replaced by 

! 

3" 3+ 2 =15, students would realize that 

bracket usage is necessary to keep the equation balanced.  

Equality 

Kieran’s (1979) theory assumes that students have a solid understanding of 

equations and the notion of equality. Readiness Indicator number 10 suggests that 

students need to be familiar with the properties of equality before entering Algebra I 

(Bottoms, 2003). However, equality is commonly misunderstood by beginning algebra 
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students (Falkner et al., 1999; Herscovics & Kieran, 1980; Kieran, 1981, 1989). 

Beginning algebra students tend to see the equal sign as a procedural marking that tells 

them to do something, or as a symbol that separates a problem from its answer, rather 

than a symbol of equivalence (Behr et al., 1976, 1980). Even college calculus students 

have misconceptions about the true meaning of the equal sign (Clement et al., 1981). 

Kieran (1981) reviewed research addressing how students interpret the equal sign 

and uncovered that students, at all levels of education, lack awareness of its equivalence 

role. Students in high school and college tended to be more accepting of the equal sign’s 

symbolism for equivalence, however they still described the sign in terms of an operator 

symbol, with an operation on the left side and a result on the right.  Carpenter, Levi, and 

Farnsworth (2000) further support Kieran’s (1981) conclusions by noting that elementary 

students believe the number immediately to the right of an equal sign needs be the answer 

to the calculation on the left hand side. For example, students filled in the number 

sentence 

! 

8 + 4 = !

! 

+5 with 12 or 17. 

According to Carpenter et al. (2000), correct interpretation of the equal sign is 

essential to the learning of algebra, because algebraic reasoning is based on students’ 

ability to fully understand equality and appropriately use the equal sign for expressing 

generalizations. For example, the ability to manipulate and solve equations requires 

students to understand that the two sides of an equation are equivalent expressions and 

that every equation can be replaced by an equivalent equation (Kieran, 1981). However, 

Steinberg, Sleeman, and Ktorza (1990) showed that eighth- and ninth-grade algebra 

students have a weak understanding of equivalent equations.  
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Kieran (1981) believes that in order to construct meaning while learning algebra, 

the notion of the equal sign needs to be expanded while working with arithmetic 

equalities prior to the introduction of algebra. If this notion were built from students’ 

arithmetic knowledge, the students could acquire an intuitive understanding of the 

meaning of an equation and gradually transform their understanding into that required for 

algebra. Similarly, Booth (1986) notes that in arithmetic the equal sign should not be read 

as makes, as in 1 plus 2 makes 3, but instead as 1 plus 2 is equivalent to 3, addressing set 

cardinality. 

Symbolism 

Unfortunately, the equal sign is not the only symbol whose use in arithmetic is 

inconsistent with its meaning in algebra (Kieran 1992; Küchemann, 1981). In arithmetic, 

both the equal and the plus sign are typically interpreted as actions to be performed (Behr 

et al., 1976, 1980); however, this is not how they are used in algebra. In arithmetic, the 

plus sign becomes a signal to students to conjoin two terms together (as in 

! 

2 + 1

2
= 2 1

2
). 

However, in algebra, 

! 

2 + x  is not equal to 

! 

2x  (Booth, 1986). Both beginning and 

intermediate algebra students have been found to misinterpret the concatenation of 

numbers and letters (

! 

4a) as addition (

! 

4 + a) instead of multiplication (

! 

4 " a) (Kieran, 

1988).  

To avoid this confusion, Booth (1984) argues that the underlying structure of 

algebra needs to be exposed to students while working with arithmetic, prior to learning 

algebra. For example, students are trained throughout arithmetic that solutions are 

presented in the form of a single term (

! 

2 + 5 is not an acceptable answer). Therefore, 
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students believe that signs such as 

! 

+  and - cannot be left in an algebraic answer (such as 

! 

3+ a). This leads to the misuse of concatenation (

! 

3a) to create an answer that is a single 

term (Booth, 1988). According to Booth (1984), elementary students should be taught to 

recognize that the total number of items in two sets containing six and nine objects, 

respectively, can be written as 

! 

6 + 9 (rather than 15). This will allow them to see how 

! 

a + b  represents the total number of items in two sets (containing a and b items) and can 

be treated as a single object and valid answer in algebra (Watson, 1990).  

Symbolism is mentioned in a substantial portion of the research addressing 

algebraic understanding and misconceptions (Behr et al., 1976, 1980; Booth, 1984, 1986; 

Kieran, 1992; Küchemann, 1981); however, is not directly addressed within the 

Readiness Indicators (Bottoms, 2003). Similarly, letter usage is cited in a great deal of 

algebra research (Booth, 1984, 1986, 1988; Küchemann, 1978, 1981; Macgregor & 

Stacey, 1997; Sleeman, 1984; Usiskin, 1988; Watson, 1990); yet, the Readiness 

Indicators do not directly address this issue either (Bottoms, 2003). 

Letter Usage 

The transition from arithmetic to algebra can be troublesome for students not only 

due to symbol confusion, but also because it is where students are first introduced to the 

usage of letters in mathematics. This new algebraic notation causes difficulties for many 

students (Küchemann, 1978, 1981; Macgregor & Stacey, 1997; Sleeman, 1984). 

According to Watson (1990), variable introduction should be based upon pattern 

generalization. Children should first learn how to find and record patterns and write 

pattern-rules in words. Eventually they will seek more concise ways of writing rules. At 
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this time, the introduction of variables will make sense and be appreciated by the student. 

The extension and generalization of patterns are also noted in Readiness Indicator 

number 11 (Bottoms, 2003). 

Research shows that novice algebra students do not understand the meaning of 

letters and commonly interpret letters as standing for objects or words (Macgregor & 

Stacey, 1997). Even once students are able to accept that letters are standing for numbers, 

they have a tendency to associate letters with their positions in the alphabet (Watson, 

1990) and do not understand that multiple occurrences of the same letter represent the 

same number (Kieran, 1988). After these misconceptions are addressed, students still 

view the letters as representing specific unknown values, as in 

! 

3+ x = 8 , rather than for 

“numbers in general”, as in 

! 

x + y = y + x  (Booth, 1986). Küchemann (1978, 1981) found 

that only a very small percentage of students, ages 13-15, were able to consider a letter as 

a generalized number. Even fewer were able to interpret a letter as a variable. The 

majority of the students in Küchemann’s studies treated the letters as concrete objects or 

just ignored them completely.  

Macgregor and Stacey (1997) investigated the origins of students’ 

misinterpretations of letter usage in algebra, throughout a series of studies involving 

approximately 2000 students, ages 11-15, across 24 Australian schools. This research 

uncovered that new content students were learning in mathematics and other subjects 

(such as computer programming) was interfering with their comprehension of algebraic 

notation. For example, students combined numbers and letters in algebra using rules from 

the Roman numeration system; some followed the conventions behind writing chemical 
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combinations in chemistry. In fact, Macgregor and Stacey argue that any alternative letter 

association can produce misconceptions in students’ understanding of algebraic notation. 

Even the use of letters as a numbering schema in textbooks can cause students to relate 

letters with their numerical positions in the alphabet.  

Misconceptions were also found to be a product of misleading teaching materials. 

When Macgregor and Stacey (1997) tested students across three schools, multiple times 

throughout a 13-month period, results showed that students in one school had marked 

difficulty with letter usage in algebra and persistently misinterpreted letters as 

abbreviated words or labels for objects. However, in the other two schools, only two 

instances of letters used as abbreviated words were found in the first test and none after 

that. It was later realized that teaching materials at the latter two schools only used letters 

to stand for unknown numbers; whereas those of the first school were found to explicitly 

present letters as abbreviated words (for example 4d could mean “four dogs”).  

This research supports Booth (1984, 1986, 1988), who argues that student 

difficulties in beginning algebra result from the inconsistent usage of letters in arithmetic 

and algebra. In arithmetic, letters such as “m” and  “c” are used as labels to represent 

meters and cents, not the number of meters or the number of cents, as they would in 

algebra (Booth, 1988). Teachers read the equation 

! 

a = l " w  as area equals length times 

width (Booth, 1986); yet, they are surprised when students claim that the y in 

! 

5y + 3 

could stand for yachts or yams, but must represent something that starts with a y (Booth, 

1984).  
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Furthermore, conversions stated 6m = 600cm are read six meters are equivalent to 

600 centimeters. Students use this knowledge to read algebraic equations such as 

! 

6P = S  

as six professors are equal to one student (Booth, 1986). Intuitively this implies that there 

are six times as many professors as there are students. However, algebraically this 

equation is representing the exact opposite. This convention could cause students to 

incorrectly translate word sentences into algebraic equations. In the reverse of the task 

above, namely symbolizing that there are six times as many students as professors, the 

most common error is writing the equation 

! 

6S = P , known as a reversal (Wollman, 

1983). This translation, however, would make sense to the student who reads it as a 

conversion statement, six students are equal to one professor. 

Equation Writing 

Translational errors have been identified throughout a variety of equation writing 

tasks (Clement et al., 1981). A study including 150 freshmen engineering students noted 

student difficulties in writing equations from data tables. In fact 51% of the students were 

unable to generate an equation that was being modeled by a table of data. Here, Clement 

et al. noted the aforementioned misconception of equality, in addition to the occurrence 

of reversal errors.  

Since reversal errors are so common, Wollman (1983) investigated the actions 

college students take after they write an equation that is reversed. According to Wollman, 

students lack the ability (or thought) to check their answers in a meaningful way; this 

inability or negligence is a key component of students’ performance in algebra. He 

suggests that students learn to ask themselves questions regarding the equations that they 
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write. Upon investigation, not one student in Wollman’s six studies could remember 

being taught how to check the meaning of an equation against the meaning of the 

sentence it was created from. However, once the students were prompted to think about 

the equations they had written, many were able to produce correct equations or fix their 

incorrect ones. Perhaps if the practice of answer checking were taught prior to algebra, it 

would become a natural part of students’ algebraic reasoning and help them in translating 

various data into algebraic form.  

With tools like these, teachers could help strengthen students’ fluency in writing 

equations, a key component of Readiness Indicator number 10. In fact, the SREB 

acknowledges many of the identified areas of difficulty within this one indicator, which 

states that students need to be able to write, simplify, and solve algebraic equations using 

substitution, the order of operations, the properties of operations, and the properties of 

equality (Bottoms, 2003). 

Functions 

The SREB also claims that in order to be prepared for Algebra I, students need to 

understand and be able to represent functions algebraically and graphically, in Readiness 

Indicator number 12 (Bottoms, 2003). Not only is the concept of a functional relation 

between two variables a central concept in prealgebra courses, according to Brenner et al. 

(1995) translating and applying mathematical representations of functional relations are 

two cognitive skills that are essential for success in algebraic reasoning. Yet, functions 

are notoriously difficult for many students to understand (Brenner et al., 1995).  
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One specific difficulty found among ninth- and tenth-grade students who had 

studied general and linear functions involved using vocabulary terms associated with 

functions: preimage, image, domain, range, and image set (Markovits, Eylon, & 

Bruckheimer, 1988). Students also struggled with certain types of functions, such as 

constant functions and functions whose graphical representations are disconnected. A 

common misconception was that every function is a linear function.  

According to Markovits et al. (1988), students of lower ability find it easier to 

handle situations involving functions that are given within a story versus those that are 

only presented mathematically. Although, it should be noted that much research has 

discussed difficulties that students encounter while solving word problems (Booth, 1981; 

Chaiklin, 1989; Clement, 1982; Kieran, 1992; Stacey & MacGregor, 2000). Additionally, 

Markovits et al. concluded that students have an easier time handling functions that are 

given in graphical form versus those in algebraic form. This result implies that the 

development of graphing capabilities needs to precede the learning of functions. 

Similarly, Readiness Indicator number 8 claims that, prior to Algebra I, students should 

be able to gather, organize, display, and interpret data (Bottoms, 2003), that is be fluent 

with graphs and tables. However, graphing has been specifically identified as a concept 

that causes problems for algebra students (Brenner et al., 1995; Chazan & Yerushalmy, 

2003; Kieran, 1992; Leinhardt et al., 1990). 

Geometry 

Readiness Indicators numbers 5, 6, and 7 address geometric concepts including 

the ability to draw and classify geometric figures, measure length, find perimeter, area, 
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surface area, and volume, and use the Pythagorean relationship (Bottoms, 2003). 

Although the current review was not exhaustive, no research-based literature specifically 

identified geometric skills as prerequisite knowledge or cause of misconception in 

algebra. However, geometric concepts including area and perimeter have appeared in 

research investigating algebraic understandings (Booth, 1984; Kieran, 1992; Küchemann, 

1978, 1981; Miller & Smith, 1994).  

In one such study, Booth (1984) used an item from the Concepts in Secondary 

Mathematics and Science (CSMS) assessment that involved having students find the area 

of a rectangle. The rectangle had a height of 7 units, while its length was subdivided into 

two portions, namely 3 and f. Booth’s interviews showed that students had a good 

understanding of area and could describe their method for finding area verbally; but when 

the dimensions included variables, students were not able to correctly symbolize their 

methods or answers. Perhaps basic geometry skills could be used as a foundation to help 

students build a better understanding of algebra. Additional research is needed to support 

this idea, along with the claims stated within Readiness Indicators number 5, 6, and 7. 

Summary of Prerequisite Knowledge for the Learning of Algebra 

Researchers, teachers, and curriculum experts have noted content areas believed 

to contribute to students’ abilities to succeed in algebra. Specifically, the Southern 

Regional Education Board (SREB) produced a list of 12 algebra-specific skills, 

Readiness Indicators, which classify the prior knowledge necessary for success in 

Algebra I (Bottoms, 2003). The list was developed by mathematics education experts, but 

not based upon research. Therefore, similarities and differences between the relevant 
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research and the Readiness Indicators were investigated (Welder, 2006). Synthesis of the 

research indicates that prior to learning algebra, students must have an understanding of: 

(1) numbers (and numerical operations), (2) ratios/proportions, (3) the order of 

operations, (4) equality, (5) patterning, (6) algebraic symbolism (including letter usage), 

(7) algebraic equations, (8) functions, and (9) graphing.  

Knowledge Needed for Teaching Mathematics  

What a teacher knows is one of the most important influences on what is done in 

classrooms and ultimately on what students learn (Fennema & Franke, 1992). A recent 

research study showed that teachers who scored higher on a measure of mathematical 

knowledge for teaching produced larger gains in student achievement (Hill et al., 2005). 

In fact, students of teachers who scored in the top quartile showed gains equal to an extra 

two to three weeks of instruction, when compared with students of teachers who score 

was considered average (Ball, Hill, & Bass, 2005). Teachers' knowledge successfully 

predicted the size of student gain scores, even though the researchers controlled for things 

such as student socioeconomic status, student absence rate, teacher credentials, teacher 

experience, and average length of mathematics lesson (Hill et al., 2005).  

For decades, researchers have been trying to identify the knowledge that is needed 

by teachers. Although many aspects of teachers’ knowledge are agreed upon, the 

mathematical content teachers must know in order to teach has yet to be mapped 

precisely (Hill et al., 2004). Hence, multiple legitimate competing definitions of 

mathematical knowledge for teaching are recognized by the research community (Ball et 
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al., 2005). Researchers agree that content knowledge (or common knowledge of a 

subject, not specific to teachers) is an essential aspect of the knowledge needed by 

teachers. For example, Rech, Hartzell, and Stephens (1993) argue that elementary 

teachers must possess sound mathematical competency in order to effectively teach 

mathematics; and, Ma (1999) supports this ascertain, arguing that a profound 

understanding of fundamental mathematics provides the base for successful mathematics 

teaching. Ball et al. take this argument one step further by not only stating that the quality 

of mathematics teaching depends on teachers' content knowledge, but that many U.S. 

teachers lack firm mathematical understanding and skill. 

Knowing mathematics for teaching, however, goes well beyond the knowledge 

that is needed to reliably carry out an mathematical algorithm (Ball et al., 2005). The 

daily tasks of teachers, interpreting someone else’s error, representing ideas in multiple 

forms, developing alternative explanations, and choosing usable definitions (Ball, 2003), 

require teachers to know more than common subject knowledge. A teacher needs 

principled knowledge of algorithms, solutions, mathematical reasoning, and what 

constitutes adequate proof, in addition to being skilled in error analysis and the usage of 

mathematical representations (Ball, 2003; Ball et al., 2005). These types of 

responsibilities require mathematical reasoning in addition to pedagogical thinking.  

Knowledge needed for teaching became a focus in mathematics education 

research in the mid 1980s, when Shulman and his colleagues (Shulman, 1986; Wilson, 

Shulman, & Richert, 1987) investigated the subject-matter content needed by teachers in 

their groundbreaking work regarding the knowledge of accomplished teachers. Their 
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work introduced a new way of thinking about the content knowledge needed for teaching 

by developing a framework which categorized the knowledge needed for teaching 

(Shulman, 1986) and claimed that subject content knowledge must be transformed for 

teaching (Wilson et al., 1987). Specifically, teachers must have substantial pedagogical 

content knowledge that can be used to identify useful representations (such as analogies, 

metaphors, examples, pictorial and physical representations, and practices and drills) to 

effectively communicate the subject content knowledge to the student (Wilson et al., 

1987). 

The work of Shulman (1986) and Wilson et al. (1987) extended and challenged 

the commonly held beliefs about how teachers’ knowledge might affect their teaching. 

These new ideas of teachers’ knowledge suggested that teachers’ effectiveness is 

influenced by not only the knowledge of content itself, but also by the knowledge of how 

to teach that content. Ever since, researchers in mathematics education have increasingly 

focused on teachers’ knowledge of mathematics for teaching. In an extensive synthesis of 

the research, Hill & Ball (2004) found that studies continue to suggest that in the field of 

mathematics, how teachers hold knowledge may matter more than how much knowledge 

they hold. In fact, “teaching quality might not relate so much to performance on standard 

tests of mathematics achievement as it does to whether teachers’ knowledge is procedural 

or conceptual, whether it is connected to big ideas or isolated into small bits, or whether it 

is compressed or conceptually unpacked” (Hill & Ball, 2004, p. 332).  

Researchers assert that this additional knowledge required of teachers (or lack 

there of) will affect their teaching decisions and ultimately their students’ achievements 
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in mathematics (Ball & Wilson, 1990; Graeber, 1999; Lee et al., 2003; Rine, 1998). 

Anders and Leinhardt claim that how teachers link their knowledge to their teaching 

performance, frequently referred to as pedagogical content knowledge, is critically 

important for children when they are learning mathematics (as cited in Lee et al., 2003). 

Ball and Wilson declare that teachers who themselves are tied to a procedural knowledge 

of mathematics are not equipped to represent mathematical ideas to students in ways that 

will connect their prior and current knowledge and the mathematics they are to learn, a 

critical dimension of pedagogical content knowledge. Graeber warns that preservice 

teachers who enter the classroom without valuing student understanding will not be able 

to assess understanding or use knowledge of students' current understanding to make 

instructional decisions. Those who fail to provide alternative paths to understanding will 

leave some students without understanding. Also, those who fail to recognize and analyze 

alternative algorithms and solutions will declare students' reasoning incorrect when valid 

or correct when invalid (Graeber, 1999).  

A synthesis of literature done by Rine (1998) further suggests that student 

achievement can increase if teachers learn about students' thinking. This belief is 

supported by the work of The Wisconsin University's Cognitively Guided Instruction 

(CGI) Program and the University of California at Los Angeles' Integrating Mathematics 

Assessment Project (IMA). Both projects have presented evidence that students whose 

teachers learned about aspects of students' thinking about addition and subtraction word 

problems and fractions, respectively, increased their achievement in mathematics (Rine, 

1998).  
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Development of a Theoretical Framework 

Researchers have proposed several ways of distinguishing between the many 

facets of knowledge needed by a teacher to teach effectively. A theoretical framework for 

the knowledge for teaching mathematics was specifically designed for use in this 

dissertation, built upon the work of Shulman (1986), Rowan et al. (2001), Hill and Ball 

(2004), Hill et al. (2004), and Ball (2006). 

Shulman (1986) introduced a new way of thinking about the content knowledge 

needed for teaching in his pioneering work that popularized the concept of pedagogical 

content knowledge. First, Shulman categorized the knowledge needed for teaching into 

two domains, namely content knowledge for teaching, “the amount and organization of 

knowledge per se in the mind of the teacher” (Shulman, 1986, p. 9), and pedagogical 

knowledge, “the knowledge of generic principles of classroom organization and 

management and the like” (Shulman, 1986, p. 14). Shulman then broke content 

knowledge for teaching down into three subcategories: subject matter content knowledge, 

pedagogical content knowledge, and curricular knowledge. Subject matter content 

knowledge includes both facts and concepts in a discipline, in addition to why these facts 

and concepts are true, and an understanding of how knowledge is generated and 

structured within the subject. “The teacher need not only understand that something is so; 

the teacher must further understand why it is so, on what grounds its warrant can be 

asserted, and under what circumstances our belief in its justification can be weakened and 

even denied” (Shulman, 1986, p. 9). 
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Pedagogical content knowledge, on the other hand, is “the particular form of 

content knowledge that embodies the aspects of content most germane to its 

teachability,” which “goes beyond knowledge of subject matter per se to the dimension of 

subject matter knowledge for teaching” (Shulman, 1986, p. 9). This knowledge includes 

the ways of representing and formulating the subject that make it comprehensible to 

others, “the most useful forms of representation of those ideas, the most powerful 

analogies, illustrations, examples, explanations, and demonstrations” (Shulman, 1986,  

p. 9). Pedagogical content knowledge also includes an understanding of the conceptions 

and preconceptions of students, in addition to the factors affecting the difficulty of 

learning specific topics of study.  

Lastly, curricular knowledge is the knowledge of the curriculum which “is 

represented by the full range of programs designed for the teaching of particular subjects 

and topics at a given level, the variety of instructional materials available in relation to 

those programs, and the set of characteristics that serve as both the indications and 

contraindications for the use of particular curriculum or program materials in particular 

circumstances” (Shulman, 1986, p. 10). This includes knowledge of “alternative 

curriculum materials for a given subject or topic within a grade”, “the curriculum 

materials under study by his or her students in other subjects they are studying at the 

same time”, and “familiarity with the topics and issues that have been and will be taught 

in the same subject area during the preceding and later years in school” (Shulman, 1986, 

p. 10).  



36 

According to Rowan et al. (2001), in Shulman’s view, pedagogical content 

knowledge is the form of practical knowledge that is used by teachers to guide their 

actions in highly contextualized classroom settings” (Rowan et al., 2001, p. 2). The 

multiple aspects of this knowledge were further illuminated when these researchers 

divided it into three subcategories: (1) content knowledge, (2) knowledge of students’ 

thinking, and (3) knowledge of pedagogical strategies. Content knowledge is the 

“knowledge of the central concepts, principles, and relationships in a curricular domain, 

as well as the knowledge of alternative ways these can be represented in instructional 

situations” (Rowan et al., 2001, p. 5). Knowledge of students’ thinking refers to the 

“knowledge of likely conceptions, misconceptions, and difficulties that students at 

various grade levels encounter when learning various fine-grained curricular topics” 

(Rowan et al., 2001, p. 5). Lastly, knowledge of pedagogical strategies is “knowledge of 

the specific teaching strategies that can be used to address students’ learning needs in 

particular classroom circumstances” (Rowan et al., 2001, p. 3). 

Hill and Ball (2004) built off the work of several other researchers (including 

Bass, Blume, Lamon, Leinhardt, Ma, Simon, Smith, and Thompson, as cited in Hill & 

Ball, 2004) who studied teacher knowledge in particular topic areas such as fractions, 

multiplication, division, and rate. These studies helped to clarify what knowing 

mathematics for teaching requires and ultimately led to the defining of what Hill and Ball 

term specialized and common content knowledge. In the field of mathematics, common 

knowledge of content is defined as the basic procedural and conceptual knowledge of 

solving mathematical problems. “This common knowledge is not unique to teaching; 
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bankers, candy sellers, nurses, and other nonteachers are likely to hold such knowledge” 

(Hill & Ball, 2004, p. 333). Specialized knowledge of content, on the other hand, is 

“unique to individuals engaged in teaching children mathematics” (Hill & Ball, 2004,  

p. 333). This knowledge includes an ability to explain why procedures work and what 

they essentially mean, in addition to appraising the methods students use when solving 

computational problems and determining whether such methods would be generalizable 

to other problems (Hill & Ball, 2004).  

One question that derives immediately from these definitions is whether 

relationships exist between common mathematical knowledge and specialized 

mathematical knowledge. Can specialized knowledge for teaching mathematics exist 

independently from common mathematical knowledge? Analyses of data from large early 

pilots of surveys with teachers (Hill & Ball, 2004) suggest that it may. Ball et al. (2005) 

found that the results for the questions representing specialized knowledge of 

mathematics were statistically separable from results on the common content knowledge 

items. They believe that these results suggest that there is a place in professional 

preparation for concentrating on teachers' specialized knowledge. 

According to Hill et al. (2004), common and specialized mathematical knowledge 

comprise one domain of teachers’ mathematical knowledge for teaching, namely content 

knowledge for teaching. The entire framework enclosing the remaining knowledge 

domains is still under development (Ball, 2006). The most recent version, although 

unpublished, is built from Shulman’s original category scheme (1985, as cited in Ball, 

2006). The mathematical knowledge for teaching is divided into two categories: subject 
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matter knowledge and pedagogical content knowledge. Subject matter knowledge is 

subcategorized into common content knowledge, specialized content knowledge, and 

knowledge at the mathematical horizon (knowledge of students’ future mathematics 

curriculum). Pedagogical content knowledge is broken into knowledge of content and 

students, knowledge of content and teaching, and knowledge of curriculum. Knowledge 

of content and students refers to the “knowledge of students and their ways of thinking 

about mathematics–typical errors, reasons for those errors, developmental sequences, 

strategies for solving problems” (Hill et al., 2004, p. 17). Knowledge of content and 

teaching includes appropriate curriculum design and choice of representations, materials, 

and explanations for students. Lastly, knowledge of curriculum is defined using 

Shulman’s (1986) explanation regarding the curriculum materials in other subjects that a 

teachers’ students are studying at the same time. 

The work cited above has been synthesized into the following theoretical 

framework for knowledge for teaching mathematics, which will serve as a guide for the 

current study. For detailed definitions of the terms utilized in this framework, please see 

the definition of terms section in Chapter 1 (pp. 4-5). 

Theoretical Framework for Knowledge for Teaching Mathematics 

I. Mathematical Knowledge for Teaching 

A. Common Content Knowledge (CCK) 

B. Pedagogical Content Knowledge 

i. Specialized Content Knowledge (SCK) 

ii. Knowledge of Students’ Conceptual Thinking 
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iii. Knowledge of Content and Teaching 

iv. Curricular Knowledge 

 

II. General Pedagogical Knowledge for Teaching 

Summary of Knowledge Needed for Teaching Mathematics 

No one disputes that teachers need a thorough understanding of the subject matter 

they teach. However, over the past two decades, much work has been done to identify 

and categorize the additional content knowledge needed by effective teachers compared 

to other professionals in their subject area. A theoretical framework for the knowledge 

needed for teaching mathematics was developed based on the works of Shulman (1986), 

Rowan et al. (2001), Hill and Ball (2004), Hill et al. (2004) and Ball (2006). This 

framework classified the knowledge needed by mathematics teachers into mathematical 

knowledge for teaching and general pedagogical knowledge for teaching. The 

mathematical knowledge for teaching was categorized into common content knowledge 

and pedagogical content knowledge, the latter of which was subdivided into specialized 

content knowledge, knowledge of students’ conceptual thinking, knowledge of content 

and teaching, and curricular knowledge. The current study will focus on prospective 

elementary teachers’ mathematical content knowledge (both common and specialized) of 

prerequisite algebra concepts. This knowledge, vital to effective teaching, will be 

investigated in respect to a collegiate mathematics content course designed for 

elementary education majors. Although the mathematical knowledge for teaching also 

entails the knowledge of students’ conceptual thinking, knowledge of content and 
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teaching, and curricular knowledge, these knowledge types are beyond the scope of the 

current study and will not be addressed within this work. 

Development and Measurement of Specialized Content Knowledge  

Since research indicates that mathematics teachers need specialized content 

knowledge of mathematics, it is valuable to investigate where teachers should, or can, 

develop such knowledge. The arguments and research of numerous scholars provide 

evidence that it is not only necessary, but in fact possible, for teacher educators to 

advance preservice teachers’ pedagogical content knowledge within collegiate course 

settings (Battista, 1994; Stacey et al., 2001; Chen & Ennis, 1995; Manouchehri, 1996; 

Miller, 1999; Davis & McGowen, 2001).  

Battista (1994) argues that teacher education institutions need to offer numerous 

mathematics courses for teachers that treat mathematics as sense making, rather than rule 

following. Teachers must be taught mathematics properly before they can be expected to 

teach it properly; and, universities must take the lead in making changes in the way that 

mathematics is taught. However, Battista warns that simply taking more college-level 

mathematics courses will not adequately prepare students to teach elementary 

mathematics. Most university mathematics courses merely reinforce the view of 

mathematics as a set of memorized procedures; hence, taking more of them will not 

benefit preservice elementary teachers in the area of specialized content knowledge.  

Given the thin pedagogical content knowledge of many preservice teachers, 

Stacey et al. (2001) recommend that teacher education programs give more attention to 
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developing this type of knowledge. Specifically, teacher education needs to emphasize 

pedagogical content knowledge that includes a thorough understanding of common 

difficulties. Chen and Ennis (1995) support these recommendations by showing that the 

enhancement of pedagogical content knowledge can help connect the subject content 

knowledge with the curriculum delivered in classrooms. Furthermore, Lee et al. (2003) 

claim that in order for preservice teachers to be prepared to teach quality mathematics in 

their prospective classrooms, teacher educators should ensure that preservice teachers 

have opportunities to develop mathematical knowledge that is specific to the needs of 

teachers.  

Miller’s (1999) research regarding mathematics content courses for preservice 

teachers implied that mathematical topics covered in these courses should address all 

three types of Shulman’s (1986) teachers’ content knowledge: subject matter content 

knowledge, pedagogical content knowledge, and curricular knowledge. Manouchehri 

(1996) argues that prospective teachers must be given the opportunity in their university 

course work to strengthen both their content and pedagogical content knowledge. Teacher 

education programs must provide time to encourage the kind of practice and reflection 

necessary for the development of prospective teachers' professional knowledge base. One 

specific area of knowledge that requires attention is the development of representations 

and representational contexts that will enable teachers to draw connections between 

concepts and applications, and algorithms and procedures (Manouchehri, 1996).  

Hill and Ball (2004) were able to show that elementary teachers advanced their 

mathematical knowledge for teaching as result of professional development. This work 
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suggests that policymakers, mathematics educators, and others can successfully design 

programs that improve teachers’ mathematical knowledge for teaching. Unfortunately, 

“few mathematics courses offer opportunities to learn mathematics in ways that would 

produce such knowledge” (Ball, 2003, p. 8). University courses required of preservice 

elementary teachers often do not have the time or concentration needed to develop the 

mathematical knowledge that is essential for elementary teachers (Battista, 1994).  

Practical experience as a teacher was once believed by scholars to be the best way 

for a person to acquire pedagogical content knowledge. In fact, collegiate teacher 

education was thought to be incapable of making significant contributions to what 

teachers need to know or be able to do (Ball & Wilson, 1990). Fortunately, these 

viewpoints have been challenged and contradicted (Ball & Wilson, 1990; Davis & 

McGowen, 2001; Miller, 1999; Strawhecker, 2004). Strawhecker (2004) identified 

significant gains in content knowledge of 96 preservice teachers enrolled in mathematics 

methods and/or mathematics content courses, at a small Midwestern university. Miller 

found that a mathematics content course that emphasized all three types of Shulman’s 

(1986) teachers’ content knowledge (subject matter content knowledge, pedagogical 

content knowledge, and curricular knowledge) was effective in increasing all three types 

of knowledge. Further support of the potential power of content courses is offered by the 

work of Davis and McGowen, who illustrated that the mathematical understanding of a 

preservice elementary teacher significantly improved during a mathematics content 

course. Therefore, research suggests that it is possible to develop specialized content 

knowledge of preservice elementary teachers within collegiate content course settings. 
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Studies Utilizing Qualitative Methods 

Over the past two decades, researchers have done great amounts of work 

regarding the knowledge required and/or possessed by successful teachers. Until recently, 

this type of research most commonly used qualitative methods, hence restricting studies 

to small sample sizes. Most of these studies relied upon interviews, either alone or in 

combination with one or more other methods, such as observations and questionnaires. 

Ball (1988) examined the knowledge and beliefs of 19 prospective elementary 

and secondary teachers (10 elementary education majors and 9 mathematics majors or 

minors preparing to teach high school). These students were interviewed when they were 

about to enter their first education course, in an attempt to develop a theoretical 

framework for assessing what teacher candidates bring to their formal preparation to 

teach mathematics. Although many of the prospective teachers could correctly answer 

questions regarding the concept of division, several could not, and few were able to 

explain and connect underlying mathematical principles and meanings. The prospective 

teachers’ knowledge was fragmented, and they tended to search for particular rules (such 

as “you can't divide by zero”) rather than focusing on the fundamental basis of the 

problems. Even though the mathematics majors showed more mathematical knowledge 

than the elementary education majors did, they were no more able to provide 

mathematical explanations and connections.  

Chang (1997) also made use of interviews in her evaluation of prospective 

elementary teachers' mathematical and pedagogical content knowledge. After 

administering a written test of mathematical content knowledge (adapted from previous 



44 

researchers’ instruments) to 417 seniors at a teachers' college in Taiwan, she later 

interviewed thirty of these students. Chang’s investigation focused on knowledge of 

teaching representations, students' strategies, misconceptions, and difficulties, and 

remediation teaching, as well as the school mathematics curriculum, in the domain of 

multiplicative structures (multiplication and division, interpretations and relationships of 

rational numbers, quantitative conceptions, as well as proportionality and linearity). 

Chang’s (1997) results showed that the level of pedagogical understanding of the 

prospective elementary teachers was unacceptably low (35% correct); and even though 

the mean score on the test of mathematical content knowledge was better (80% correct), 

it was not considered entirely satisfactory. Chang concluded that the prospective teachers 

were not able to represent their teaching methods with a wide variety of models, applied 

incorrect mathematical knowledge to solve problems, were not willing to prove their 

formulas, and provided explanations that relied on procedural approaches rather than 

conceptual understanding. 

Several researchers combined the use of interviews with observations in their 

work to investigate teacher knowledge. In one such study, Foss & Kleinsasser (1996) 

examined how preservice elementary teachers' beliefs, conceptions, practices, and views 

of mathematical and pedagogical content knowledge change during their enrollment in a 

mathematics methods course. Their results revealed symbiotic relationships between 

teachers’ views of content knowledge and instructional procedures that remained 

problematic.  
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In another, Swenson (1998) investigated four middle school teachers' subject 

matter and pedagogical content knowledge of probability and the relationship between 

these knowledge types and the teaching of probability. The case study began with pre-

observation interviews, to assess the probability subject matter knowledge of the 

teachers. Probability lessons were then observed and videotape-recorded. Then, follow-

up interviews explored teacher knowledge and its relationship to teaching practice. 

Swenson’s work showed that the teachers generally (a) lacked an explicit and connected 

knowledge of probability content, (b) held traditional views about mathematics and the 

learning and teaching of mathematics, (c) lacked an understanding of the "big ideas" to be 

emphasized in probability instruction, (d) lacked knowledge of students' possible 

conceptions and misconceptions, and (e) lacked the knowledge and skills needed to 

orchestrate discourse in ways that promoted students' higher level learning. 

Furthermore, Lomax (1999) inductively analyzed interviews and observations 

throughout his case study, which indicated that mentors play a critical role in first-year 

teachers’ pedagogical content knowledge growth. The first-year teacher showed 

pedagogical content knowledge development in her ability to incorporate data from 

multiple sources to evaluate student knowledge. Growth was noted in her ability to use 

her pedagogical content knowledge to revise instruction due to changing conditions (in 

order to tailor instruction to individual student needs) and to contextualize learning 

situations (so that students could understand the relationships between similar content). 

Other researchers have incorporated document analyses into their investigations 

of teacher knowledge, including those of two aforementioned studies, Miller (1999) and 
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Davis and McGowen (2001). Miller’s conclusion that content courses can be effective in 

increasing all three types of Shulman’s (1986) knowledge for teaching was result of data 

collected through the written documents of 28 preservice teachers taking their first 

semester of a mathematics content course. Analyzed documents included initial activities 

and problem sets, journals, portfolios, task-based assignments, examinations, and course 

evaluations. Additional data were produced from interviews that Miller conducted with 

six of the students. Davis & McGowen examined the writings of a student enrolled in a 

16-week mathematics content course for preservice elementary teachers. Their 

evaluations showed that the student began as many preservice elementary teachers do, 

expecting to apply formulas and get correct answers as in other mathematics classes. 

However, she made a significant change in her understanding of mathematics as she 

progressed through the course, leaving with a different, more relational, view of 

mathematics.  

In an additional study, Ward, Anhalt, and Vinson (2003) investigated the 

development of mathematical representations and pedagogical content knowledge of 

prospective elementary teachers, by reviewing teachers’ written documents as they 

planned for mathematics instruction. The 31 participating teachers had all completed a 

prerequisite mathematics content course and were enrolled in a semester-long elementary 

mathematics methods course at a large Southwestern university. Three times throughout 

the course, Ward et al. analyzed and coded lesson plans that were submitted as course 

assignments (not enacted in actual classrooms), based on the planned use(s) of 

mathematical representations. Over the course of the semester, these preservice teachers 
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showed an increased ability to make mathematical knowledge usable, by using more 

representations (the mean number of representations per lesson plan increased from seven 

to twelve) and moving fluently between the representations in their lessons. These 

findings led the researchers to believe that the learning opportunities provided in the 

methods course may have resulted in increased pedagogical content knowledge of the 

preservice teachers (Ward et al., 2003). 

The use of open-ended questionnaires is another qualitative approach that has 

been utilized by researchers to investigate teachers’ knowledge. One such researcher-

designed instrument, The Survey on Teaching Mathematics (Rich, Lubinski & Otto, as 

cited in Fuller, 1996), consists of 12 open-ended questions focusing primarily on whole 

number operations, fractions, geometry, number sense, and mathematical reasoning. 

Participants’ knowledge and beliefs about mathematics are examined through their 

responses to questions concerning decisions a teacher would make in specific 

mathematics classroom situations. Fuller used this instrument to obtain information 

regarding the pedagogical content knowledge of 26 preservice elementary teachers and 

28 experienced kindergarten through sixth-grade teachers. Provided answers were 

analyzed to characterize and compare preservice and experienced elementary teachers' 

pedagogical knowledge and pedagogical content knowledge regarding whole number 

operations, fractions, and geometry. Fuller’s results showed that experienced teachers 

possess a greater conceptual understanding of whole number operations than preservice 

teachers, but the teachers’ knowledge of fractions, in both groups, was primarily 

procedural. These findings imply that both preservice and experienced teachers (taught in 
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traditional mathematics classrooms) need to expand their own mathematical knowledge; 

teachers need opportunities to develop pedagogical content knowledge and to explore, 

identify, and challenge their assumptions about their role as a mathematics teacher 

(Fuller, 1996). 

To compare the pedagogical content knowledge of mathematics teachers in 

American and Chinese middle schools, An (2000) administered a questionnaire to 28 

mathematics teachers in twelve middle schools in the U.S. and 33 mathematics teachers 

in 22 schools in China. The questionnaire contained four open-ended questions regarding 

teachers' pedagogical content knowledge of fractions, ratios, and proportions and eight 

questions regarding teachers' beliefs of mathematics education. Teachers’ responses were 

coded, grouped, categorized, and compared for data analysis. Additionally, ten teachers, 

five teachers from each country, were observed and interviewed to clarify their 

questionnaire responses. An (2000) concluded that the pedagogical content knowledge of 

middle school mathematics teachers in the U.S. was distinctive from those in China. The 

U.S. teachers were better able to create various teaching methods, such as connecting to 

concrete models, cooperative learning, projects, journals, and manipulatives. However, 

the Chinese teachers, who focused more on conceptual understanding and procedure 

development, had better knowledge of the students' thinking. 

Lastly, Stacey et al. (2001) utilized a Decimal Comparison Test to investigate 553 

preservice elementary school teachers' content knowledge and pedagogical content 

knowledge of decimal numeration. Teachers from four universities in Australia and New 

Zealand completed the test, where the task was to circle the larger number from pairs of 
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numbers written in decimal form. Teachers from three universities were then asked to 

asterisk the comparison items that they believed would be difficult for students and to 

explain, in writing, on the back of the exam where the difficulty may exist. Stacey et al. 

concluded that only 80% of the preservice teachers were “experts” in the field of decimal 

numeration; and that most teachers were aware of the “longer-is-larger” misconceptions 

of students, but had little awareness of the “shorter-is-larger” misconceptions. In fact, 

some preservice teachers that acknowledged the “longer-is-larger” misconceptions of 

students were unknowingly making “shorter-is-larger” errors themselves. 

Studies Utilizing Quantitative Methods 

Few, if any, of the methods used in the aforementioned teacher knowledge 

research would be appropriate for use on a large scale. Studies involving a sizeable 

number of teachers demand the integration of quantitative instruments into methods of 

measuring teachers’ knowledge. Extensive work regarding the mathematical knowledge 

needed for teaching, conducted by the Learning Mathematics for Teaching (LMT) 

research group (supported by the National Science Foundation under Grant No. 0335411) 

at the University of Michigan (LMT, 2006), has begun to address this issue. 

Earlier work of Ball and her colleagues (Ball, 1990; Ball & Wilson, 1990) began 

to incorporate the use of questionnaires into other qualitative methods, interviews and 

observations, to investigate teacher knowledge. This longitudinal study drew on data 

from the Teacher Education and Learning to Teach Study at the National Center for 

Research on Teacher Education at Michigan State University (NCRTE, as cited in Ball, 

1990), involving 217 elementary education majors and 35 mathematics majors who 
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planned to teach high school. This work focused on the mathematical topics of rectangles 

and squares, perimeter and area, place value, subtraction with regrouping, multiplication, 

division, fractions, zero and infinity, proportion, variables and solving equations, theory 

and proof, slope, and graphing.  

These preservice teachers were administered a questionnaire upon entrance into, 

and repeatedly throughout, their formal teacher education (Ball, 1990; Ball & Wilson, 

1990). Many of the questions were grounded in scenarios of classroom instruction and 

involved particular subject matter topics. Although the use of such an instrument was not 

statistically backed at this time, it previews much of the instrument construction work 

currently underway by the aforementioned group of LMT researchers (Rowan et al., 

2001; Ball & Rowan, 2004; Hill et al., 2004). 

A smaller sample of the 252 preservice teachers was followed more closely 

throughout their preservice program and into their first year of teaching via interviews 

and observations. Through this work, Ball (1990) examined the preservice teachers’ 

subject matter knowledge by investigating their ideas, feelings, and understandings about 

mathematics and writing, about the teaching and learning of these subjects, and about 

students as learners of these subjects. Results showed that the mathematical 

understanding of elementary and secondary teacher candidates tends to be rule oriented 

and insufficient. Furthermore, this work led to the comparison of the mathematical 

understandings and pedagogical content knowledge of beginning teachers entering the 

field through an alternate route program versus three traditional teacher education 

programs (Ball & Wilson, 1990). Despite the differences in the teacher education 
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programs, the novice teachers across the two groups were found to be very similar. 

Neither the teacher education students nor the teacher trainees in the sample were well 

prepared to break down the underlying meanings behind mathematical ideas. Neither 

program had strong influence on novice teachers' ideas about the role of the teacher or 

practices that would be effective in teaching mathematics. Many of the teachers from 

both groups were unable to represent basic mathematical content in meaningful ways at 

the end of their teacher preparation programs. 

With the help of projects designed to support teacher knowledge (such as the 

NSF/DOE Math-Science Partnerships), the LMT researchers at the University of 

Michigan have made great advancements throughout the last decade in clarifying 

teachers’ knowledge, beginning to track its development, and identifying factors that 

contribute to its growth (Ball et al., 2005). In 1997, building on earlier work (see Ball & 

Bass, as cited in Ball et al., 2005) these researchers began examining the work of 

teaching elementary school mathematics. The work of teaching involves “what teachers 

do in teaching mathematics” and the ways in which “what they do demand mathematical 

reasoning, insight, understanding, and skill” (Ball, 1993, as cited in Ball et al., 2005,  

p. 17). The researchers then analyzed this mathematical knowledge required for teaching, 

in addition to how the knowledge is held and used in the work of teaching.  

The LMT research was driven by two questions: (1) “Is there a body of 

mathematical knowledge for teaching that is specialized for the work that teachers do?” 

and, (2) “Does it have a demonstrable effect on student achievement?” (Ball et al., 2005, 

p. 22). From this work they created a practice-based description of what they call 
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mathematical knowledge for teaching. Mathematical knowledge for teaching is “a kind of 

professional knowledge of mathematics different from that demanded by other 

mathematically-intensive occupations (Ball, 2003). As mentioned earlier, this knowledge 

later came to be categorized into common content knowledge, specialized content 

knowledge, knowledge at the mathematical horizon, knowledge of content and students, 

knowledge of content and teaching, and knowledge of curriculum (Ball, 2006; Hill & 

Ball, 2004; Hill et al., 2004). 

To investigate the effect of mathematical knowledge for teaching on student 

achievement, large data sets were required. The LMT researchers needed to administer 

numerous items to a large number of teachers to control for the many factors that are 

likely to contribute to students' learning. Anticipating that samples of a thousand or more 

teachers might be necessary, these researchers quickly realized that commonly used 

qualitative methods of measuring teachers' mathematical knowledge (interviews, 

observations, data analysis, etc.) would not be practical. Therefore, in 1999, LMT began 

developing unique quantitative measures of teachers' mathematical knowledge for 

teaching (Ball & Rowan, 2004; Hill et al., 2004; Rowan et al., 2001).  

Researchers involved with LMT and the Study of Instructional Improvement 

(SII), a longitudinal study of high-poverty urban elementary schools engaged in 

comprehensive school reform efforts, designed a set of survey-based, multiple-choice, 

teaching problems to measure both the common and specialized content knowledge used 

in teaching elementary mathematics (Hill & Ball, 2004). Mathematics educators, 

mathematicians, professional developers, project staff, and former teachers, wrote items 
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that involved common instructional mathematical tasks, based on the research literature 

or the writers’ experiences teaching and observing elementary mathematics classes (Hill 

& Ball, 2004; Hill et al., 2005). Questionnaire items presented short, but realistic, 

scenarios of classroom situations and then asked one or more multiple choice questions 

regarding these scenarios. Mathematical tasks included representing numbers and 

operations using materials or stories, providing reasons and explanations for concepts and 

algorithms, and appraising students’ work (Hill & Ball, 2004). Each multiple-choice 

question contained a “correct” choice and several “incorrect” choices (Rowan et al., 

2001).  

By the spring of 2001, 138 items had been written to test teachers’ knowledge of 

number concepts (including whole numbers, fractions, and decimals) and operations, 

patterns, functions, and algebra. Roughly 90 of these items, dispersed among three forms, 

were piloted during an evaluation of California’s Mathematics Professional Development 

Institutes (Hill & Ball, 2004; Hill et al., 2004); results showed that the measure could 

both reliably discriminate among teachers and meet basic validity requirements for 

measuring teachers’ mathematics knowledge for teaching. Reliability for the piloted 

forms averaged in the low .80s, with very few misfitting items. Validation work was also 

conducted by (a) subjecting a subset of items to cognitive tracing interviews, and (b) 

comparing items with the NCTM Standards to ensure that the domains specified in these 

standards were covered (Hill et al., 2005). 

This pilot study (Hill & Ball, 2004) tested whether elementary teachers learned 

mathematics knowledge for teaching during the summer workshop component of 
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California's K-6 mathematics professional development institutes. Results showed that 

teachers did learn content knowledge for teaching mathematics from professional 

development. Additionally, greater performance gains on their measures were found to be 

related to the length of the professional development and to the curricula that focused on 

proofs, communication, representations, and solution methods and analyses (Hill & Ball, 

2004). Furthermore, factor analysis of the piloted items suggested that teachers' 

knowledge for teaching elementary mathematics was multidimensional and included 

knowledge of various mathematical topics (e.g., number and operations, algebra) and 

domains (e.g., knowledge of content, knowledge of students and content) (Hill et al., 

2004). 

These measures then linked teachers’ mathematical knowledge for teaching to 

growth in students' mathematical achievement, in the aforementioned study conducted by 

Hill et al. (2005), using data from a study of schools engaged in instructional 

improvement initiatives. Researchers had collected survey and student achievement data 

from students and teachers in 115 elementary schools, across 15 states, during the school 

years of 2000-2004. Of the 334 first-grade teachers and 365 third-grade teachers included 

in this study, approximately 90% were fully certified and the teachers averaged just over 

twelve years of teaching experience apiece. The sample was deliberately constructed, 

however, to overrepresent high-poverty elementary schools in urban, urban fringe, and 

suburban areas. 

Data from almost 3,000 students were derived from student assessments and 

parent interviews; measures of student achievement were drawn from CTB/McGraw-
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Hill's Terra Nova Complete Battery, the Basic Battery, and the Survey (Hill et al., 2005). 

Information about the teachers was gathered from annual questionnaires and written logs 

that teachers completed up to 60 times during one academic year. The log was a “self-

report instrument in which teachers recorded the amount of time devoted to mathematics 

instruction on a given reporting day, the mathematics content covered on that day, and 

the instructional practices used to teach that content” (Hill et al., 2005, p. 381). The 

questionnaires contained items about language arts and mathematics teaching, 

educational background, involvement in and perceptions of school improvement efforts, 

and professional development, in addition to a total of 30 items (taken from the roughly 

90 piloted in Hill et al., 2004) designed to measure teachers’ mathematical knowledge for 

teaching. These items were balanced across content domains (13 number items, 13 

operations items, and 4 pre-algebra items) and across specialized (16 items) and common 

(14 items) content knowledge.  

Summary of Development and Measurement of Specialized Content Knowledge 

Discussion and research of numerous scholars provide substantiation of the 

necessity and ability of teacher educators to enhance preservice teachers’ pedagogical 

content knowledge within collegiate course settings (Battista, 1994; Stacey et al., 2001; 

Chen & Ennis, 1995; Manouchehri, 1996; Miller, 1999; Davis & McGowen, 2001). In 

the field of mathematics, elementary education majors are generally required to take only 

one or two semesters of mathematics content courses, specifically designed for 

elementary education majors, in addition to a mathematics methods course. Since these 

are the only required courses that will address the mathematical content that these 
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preservice teachers will teach, it is vital that they address not only common but also 

specialized content knowledge. Therefore, this study investigated the gains in 

mathematical content knowledge, both common and specialized, produced by an 

undergraduate mathematics content course for elementary education majors. Although 

research has shown that methods courses have also been successful in increasing the 

pedagogical content knowledge of teachers, these courses focus largely on pedagogical 

strategies and therefore were not included in this study of content knowledge. 

Researchers have implemented various methods of examining and testing the 

pedagogical content knowledge of preservice and inservice teachers (An, 2000; Chang, 

1997; Foss & Kleinsasser, 1996; Fuller, 1996; Hill et al., 2005; Miller, 1999; Stacey et 

al., 2001). Although the majority of these methods are qualitative, recent research 

involving large quantities of teachers has necessitated the development of appropriate 

quantitative measures of teachers’ knowledge. Since a sample size of 60-70 preservice 

elementary teachers was anticipated for this study, the aforementioned literature justified 

the development and usage of a multiple-choice measure of teachers’ common and 

specialized content knowledge constructed from the items written by the LMT research 

group at the University of Michigan (Ball & Rowan, 2004).  

Summary 

Based on the reviewed literature, there are nine mathematical concepts that 

students must be knowledgeable in, prior to entering and being successful in their first 

algebra course: (1) numbers (and numerical operations), (2) ratios/proportions, (3) the 
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order of operations, (4) equality, (5) patterning, (6) algebraic symbolism (including letter 

usage), (7) algebraic equations, (8) functions, and (9) graphing (Welder, 2006). Since 

NCTM Standards command that the K-8 mathematics curriculum cover these topics 

(NCTM Principles & Standards, 2000), prerequisite algebra concepts become the 

responsibility of elementary school teachers. Since research shows that teachers’ 

knowledge affects student achievement (Greenwald et al., 1996; Hill et al., 2005), 

elementary teachers must have adequate knowledge to effectively teach prerequisite 

algebra concepts. 

Even though a profound understanding of fundamental mathematics is essential to 

successful mathematics teaching (Ma, 1999), effective teachers must also possess 

mathematical knowledge that “goes well beyond what is needed to carry out (an) 

algorithm reliably” (Ball et al., 2005, p. 22). Teachers need specialized mathematical 

knowledge that is specific to the daily tasks of teachers, including “interpreting someone 

else’s error, representing ideas in multiple forms, developing alternative explanations, 

and choosing a usable definition” (Ball, 2003, p. 8). A theoretical framework for the 

knowledge for teaching mathematics (built upon the work of Hill & Ball, 2004; Hill et 

al., 2004; Shulman, 1986; Rowan et al., 2001) suggests that the mathematical content 

knowledge needed for teaching consists of not only common content knowledge, but also 

specialized content knowledge. 

Specialized content knowledge has been found to increase as result of collegiate 

mathematics content courses (Davis & McGowen, 2001; Miller, 1999), field experiences 

(Strawhecker, 2004), and professional development seminars (Hill & Ball, 2004). This 
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research suggests that it is appropriate and necessary for specialized content knowledge 

to be addressed within collegiate courses for preservice teachers. To examine and test the 

pedagogical content knowledge and specialized content knowledge, researchers have 

utilized various methods, most of which have been qualitative (An, 2000; Chang, 1997; 

Foss & Kleinsasser, 1996; Fuller, 1996; Hill et al., 2005; Miller, 1999; Stacey et al., 

2001). However, recent research involving large quantities of teachers has motivated the 

development and piloting of reliable quantitative measures of the mathematical 

knowledge needed for teaching (Ball & Rowan, 2004; Hill et al., 2004; Rowan et al., 

2001).  

In conclusion, students must learn prerequisite algebra concepts throughout their 

K-8 mathematics education, making it necessary for elementary teachers to be 

knowledgeable regarding this material. To effectively teach these topics to children, 

elementary teachers’ knowledge must surpass the common content knowledge of 

prerequisite algebra concepts, to include the specialized content knowledge necessary for 

teaching them. Collegiate mathematics content courses can address and enhance both of 

these aspects of the mathematical knowledge needed for teaching. Therefore, the current 

study investigated the effects of an undergraduate mathematics content course on 

preservice elementary teachers’ common and specialized content knowledge of 

prerequisite algebra concepts. Since a sample size of 60-70 participants was anticipated 

for this study, the aforementioned LMT quantitative measures were used in the design 

and implementation of a instrument which tests preservice teachers’ common and 

specialized content knowledge of prerequisite algebra concepts (Ball & Rowan, 2004). 
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 CHAPTER 3 

DESIGN AND METHODS 

Research Design 

The focus of this study was twofold, and included both: (1) the development of a 

quantitative instrument viable for successfully analyzing teachers’ content knowledge 

(both common and specialized) of prerequisite algebra concepts, and (2) the 

implementation of the developed instrument to measure the effects of an undergraduate 

mathematics content course for elementary education majors on preservice teachers’ 

mathematical content knowledge (both common and specialized) of prerequisite algebra 

concepts (see p. 2). The second portion of this study examined gains in mathematical 

content knowledge through a pre-experimental one-group pretest-posttest design.  

Research Questions 

The current study focused on several research questions, all with respect to an 

undergraduate first-semester elementary education mathematics content course. The 

development and implementation of a quantitative instrument capable of measuring 

teachers’ mathematical content knowledge (both common and specialized) of prerequisite 

algebra constructs addressed the following questions: 

1. What effects does this course have on preservice teachers’ mathematical 

content knowledge of prerequisite algebra concepts? 
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2. What effects does this course have on preservice teachers’ mathematical 

content knowledge of individual prerequisite algebra constructs (number 

concepts and equation/function concepts)? 

3. What effects does this course have on preservice teachers’ common content 

knowledge and specialized content knowledge of prerequisite algebra 

concepts? 

4. What relationship, if any, exists between preservice elementary teachers’ 

common and specialized content knowledge of prerequisite algebra concepts?  

5. What patterns, if any, exist among items missed by more or less preservice 

elementary teachers than predicted on the instrument measuring mathematical 

content knowledge of prerequisite algebra concepts? 

Pilot Study 

To assist the design of the research methods, a pilot study was conducted to 

investigate preservice teachers’ content knowledge of prerequisite algebra concepts. The 

pilot sample consisted of all students enrolled in Math 130 (n = 55) or Math 131 (n = 58) 

at Montana State University, present in class on April 10, 2006 (n = 113). The students 

were administered two of the Content Knowledge for Teaching Mathematics (CKTM) 

Measures created through the Learning Mathematics for Teaching (LMT) Project at the 

University of Michigan (LMT, 2006). CKTM forms addressing number concepts and 

operations (NCOP) have piloted reliabilities that range from 0.71-0.89; those addressing 

patterns, functions, and algebra (PFA) range from 0.77-0.87. The measure administered 
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in the pilot study combined the most recent form developed in each of these content areas 

(NCOP 2004B & PFA 2006B). All measures were hand-scored using the raw score to  

z-score conversion charts that were constructed and provided by the LMT researchers 

based on the performance of the sample in the LMT pilot studies (Hill & Ball, 2004; Hill 

et al., 2004). Since two z-scores were created for each participant (one for NCOP and one 

for PFA), a total of 226 z-scores were calculated. The results of this pilot investigation 

guided the remaining design of the current research study.  

Sample 

Elementary education majors at Montana State University are required to take one 

year-long sequence of mathematics content courses: Mathematics for Elementary School 

Teachers I and II (Math 130 and 131). The first semester of this sequence (Math 130) 

addresses sets, whole numbers (operations, properties, and computations), number theory, 

fractions, decimals, ratios, proportions, percents, integers, and sometimes rational and 

real numbers (Musser, Burger, & Peterson, 2006). The curriculum of Math 131, 

contrastingly, focuses on geometry, statistics, and probability.  

Due to the varied aims of these courses, Math 130 is the only content course that 

directly addresses any of the nine prerequisite algebra concepts (numbers and numerical 

operations, ratios/proportions, the order of operations, equality, patterning, algebraic 

symbolism including letter usage, algebraic equations, functions, and graphing). 

Although Math 131 does offer students opportunities to practice and enhance prerequisite 

algebra skills, it is hypothesized that this course does not significantly increase students’ 
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content knowledge in regards to prerequisite algebra concepts. The results of the pilot 

study support this assumption by showing that students who have taken both Math 130 

and Math 131 differ little in terms of their knowledge of prerequisite algebra concepts 

from students who have only taken Math 130. A one-way ANOVA illustrated that the 

pilot data did not provide significant evidence (p = 0.193, ! = 0.05) to reject a null 

hypothesis that the mean of the difference in NCOP content knowledge between Math 

130 and Math 131 students is zero.  

Similar results showed that although Math 131 students achieved higher scores of 

PFA content knowledge, this difference was also not significant (p = 0.067, ! = 0.05). It 

is important to note that the traditional track of these two mathematics content courses 

involves taking Math 130 during a fall semester and Math 131 in the subsequent spring 

semester. Therefore, the non-traditional courses (Math 130 courses offered in the spring 

and Math 131 courses offered in the fall) tend to have a higher percentage of students 

who are retaking the course. This fact would predict the achievement level of students in 

a fall Math 130 course to be greater than that of a Math 130 course offered in the spring. 

Hence, even though there appeared to be a small, but not statistically significant, 

difference in PFA content knowledge, this result is believed to be an effect of the pilot 

study taking place during a spring semester.  

Math 130 is the best opportunity for preservice teachers to enhance not only their 

common content knowledge, but also their specialized content knowledge of prerequisite 

algebra concepts. In fact, due to the variety of collegiate methods courses and 

experiences working with children afforded to students, this course could be the only 
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exposure to prerequisite algebra concepts some preservice teachers get before entering 

the work field. Therefore, it is paramount that the effectiveness of Math 130 in increasing 

preservice teachers’ mathematical content knowledge (both common and specialized) of 

prerequisite algebra concepts is examined. Thus, the sample of this study was comprised 

of all students who completed Math 130 at Montana State University, during the fall 

semester of 2006 (n = 48). With only minor variations, these students were mostly female 

and freshman of traditional age. 

Discussion of Math 130 Design and Instruction 

Construction 

Math 130 is a four-credit semester course which meets for 50-minute time 

periods, four days a week (Monday, Tuesday, Thursday, and Friday), for approximately 

16 weeks. Three sections of the course were offered during the semester of data 

collection (fall 2006), from 8:00-8:50am, 9:00-9:50am, and 12:00-12:50pm. Course 

material is examined through a variety of instructional strategies including lecture, class 

discussion, hands-on activities, group-work and student collaboration, student 

presentations, writing tasks, quizzes, and exams.  

Instructors 

During the fall of 2006, graduate teaching assistants independently taught two of 

the three sections, while the third, as well as course supervision, was handled by and 

assistant professor of mathematics education. Instructors met one hour a week to design 

course activities and exams and to align course schedules and goals. Although instructors 
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wrote individual quizzes, the syllabus, most activities, and all exams given across the 

three sections were identical.  

Course Objectives  

As stated on the course syllabus: 

1. Solve mathematical problems based on Polya's model and using a variety of 

strategies. 

2. Identify the structure of the whole, integer, rational, and real number systems. 

3. Perform mathematical operations in base ten and other bases, use traditional 

and alternative algorithms, and solve elementary problems in number theory 

and set theory. 

4. Apply technology appropriately in exploring and solving mathematical 

problems. 

5. Model and use an activity-oriented approach to teaching and learning 

mathematics. 

6. Encourage discourse, self-motivation, and independent thinking in learning 

mathematics. 

Course Materials 

The Math 130 course curriculum, which is considered to be standard for this type 

of mathematics content course offered for elementary education majors, sequentially 

followed Chapters 1-9 of the textbook, Mathematics for Elementary Teachers:  A 

Contemporary Approach, 7th edition (Musser et al., 2006).  
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Chapter 1:  Introduction to Problem Solving 

 1.1 The Problem Solving Process and Strategies 

 1.2  Three Additional Strategies 

Chapter 2:  Sets, Whole Numbers, and Numeration2.1 Sets As a Basis for Whole 

 Numbers 

 2.2  Whole Numbers and Numeration 

 2.3  The Hindu-Arabic System 

 2.4  Relations and Functions 

Chapter 3:  Whole Numbers: Operations and Properties 

 3.1  Addition and Subtraction 

 3.2  Multiplication and Division 

 3.3  Ordering and Exponents 

Chapter 4:  Whole-Number Computation – Mental, Electronic, and Written 

 4.1  Mental Math, Estimation, and Calculators 

 4.2  Written algorithms for Whole-Number Operations 

 4.3  Algorithms in Other Bases 

Chapter 5:  Number Theory 

 5.1  Primes, Composites, and Tests for Divisibility 

 5.2  Counting Factors, Greatest Common Factor, and Least Common 

  Multiple 

Chapter 6:  Fractions 

 6.1  The Set of Fraction 
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 6.2  Fractions: Addition and Subtraction 

 6.3  Fractions: Multiplication and Division 

Chapter 7:  Decimals, Ratio, Proportion, and Percent 

 7.1  Decimals 

 7.2  Operation with Decimals 

 7.3  Ratio and Proportion 

 7.4  Percent 

Chapter 8:  Integers 

 8.1  Addition and Subtraction 

 8.2  Multiplication and Division 

Chapter 9:  Rational Numbers and Real Numbers, with an Introduction to 

 Algebra 

 9.1  The Rational Numbers 

 9.2  The Real Numbers 

 9.3  Functions and Their Graphs 

During the fall of 2006, the Math 130 curriculum excluded Section 4.3 

(Algorithms in Other Bases), combined Sections 2.4 (Relations and Functions) and 9.3 

(Functions and Their Graphs) and covered them together after Chapter 3 (of Musser et 

al., 2006), and reversed the order of Sections 9.1 (The Rational Numbers) and 9.2 (The 

Real Numbers). Additional student activities and supplementary materials used in the 

course came from multiple sources, including Dolan, Williamson, and Muri (2007), Friel, 

Rachlin, and Doyle (with Nygard, Pugalee, and Ellis) (2001), Johnston (1998), Lappen, 
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Fey, Fitzgerald, Friel, and Phillips (1998), Willard (2006), and Williams and Bright 

(1998). Instructors had no knowledge of the items being tested by this study; therefore, 

instruction was totally disconnected from the instrument. 

Measure 

An instrument was developed to test preservice teachers’ common and specialized 

content knowledge of prerequisite algebra concepts. The instrument  was constructed 

from the Content Knowledge for Teaching Mathematics Measures (CKTM measures), 

created by the Learning Mathematics for Teaching (LMT) Project (Hill et al., 2004). 

Select items from the CKTM measures question bank (addressing number concepts, 

number operations, patterns, functions, and algebra) were combined to create a measure 

addressing each of four constructs (common content knowledge, specialized content 

knowledge (see pp. 4-5), number concepts, and equation/function concepts (see pp. 71-

72)). All items included in these four individual measures were then combined to create 

the final instrument addressing common and specialized content knowledge of 

prerequisite algebra concepts.  

Item response theory was utilized in the development of this instrument. Item 

response theory estimates abilities for the individuals that take a test and item parameters 

based on abilities. The LMT researchers used this theory to create information for each 

item included among their various pilot studies. Each item is illustrated in terms of an 

item characteristic curve, which displays the probability that a teacher (based on his/her 

ability level) will get that item correct (see Figure 1). Ability levels are written as 
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standard deviation units ranging from -3.0 to +3.0 standard deviations. Item information, 

provided by the authors in scalebuilding spreadsheets, was used to construct hypothetical 

test information curves for each of the four embedded measures and the overall 

developed instrument to project internal reliability.  

Figure 1. Example item characteristic curve. 

 

Targeting the Assessment 

 Each measure needed to be developed to assess teachers well across the range of 

ability levels that were projected within the sample. If the instrument was not designed 

around the projected ability levels of the teachers in the sample, it could have potentially 

lost the power to discriminate between teachers of certain ability levels. For example, if 

an exam is to be comprised of five items (I1 – I5) and given to two teachers (T1 and T2), 

then it must be designed to discriminate between the ability levels of these two teachers. 

The following curves (see Figures 2 and 3) illustrate the distribution of teacher ability 

levels, with five potential exam items marked along the teacher ability levels they target 
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for each figure. Since the items marked in Figure 2 are designed to target teachers of 

lower abilities than the teachers in the sample, an instrument only comprised of these 

items would not be capable of discriminating between these two teachers. Both of these 

teachers would be expected to get all five items correct, producing equivalent test scores. 

However, if the items were chosen to spread more thoroughly across the range of abilities 

in which these teachers fall (as in Figure 3), the instrument would have a better potential 

to discriminate among the two teachers. For the five items marked in Figure 3, teacher 

two (T2) would be expected to get three items correct, whereas teacher one (T1) would be 

expected to get only two items correct. 

Figure 2. Five exam items incapable of discriminating between the two given teachers. 

 

Figure 3. Five exam items capable of discriminating between the two given teachers. 
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LMT researchers believe that a typical sample of teachers will perform within the 

range of -2.0 and +2.0 standard deviations of the teachers that they evaluated in their pilot 

studies. However, all of the CKTM items were piloted with inservice teachers whereas 

this study’s sample consisted of preservice teachers. Therefore, it was necessary to 

estimate how the average preservice teacher in the sample was expected to perform 

relative to the average inservice teacher in the LMT pilot studies.  

The results of the aforementioned pilot investigation showed that the sampled 

population of preservice teachers performed approximately 0.25 standard deviations 

below the pilot sample (see Figure 4 for distribution of the 226 z-scores). Based on this 

information, the instrument developed was designed to measure preservice teachers 

ranging in ability between -2.25 and +1.75 standard deviations well, with the ability level 

of -0.25 standard deviations targeted for best measurement. 

Figure 4. Results of the pilot study administration of two CKTM Measures (n = 113) 

displayed in standard deviation units. 
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Item Consolidation and Coding 

Approximately 375 items from 23 preconstructed elementary and middle schools 

CKTM forms were gathered together. Items that did not address number concepts, 

numerical operations, patterns, functions, or algebra, as well as repeat items, were 

deleted; nearly identical items were combined. All of the remaining unique items were 

considered for inclusion on the developed instrument.  

These items were coded according to the type of knowledge (common versus 

specialized, see pp. 4-5) addressed in the question and the aforementioned nine 

prerequisite algebra concepts (see p. 2) that they address. Since items consistently 

addressed multiple prerequisite algebra concepts simultaneously, areas of overlap were 

naturally condensed into two prerequisite algebra constructs: (1) number concepts, and 

(2) equation/function concepts. These constructs, described below, were then expert-

checked by a local eighth-grade prealgebra teacher.  

Number Concepts are skills related to reading, writing, representing, and 

computing with numbers in a variety of forms, including integers, fractions, decimals, 

ratios, and proportions. Since correct usage of the order of operations is vital to numerical 

computations, this concept is also included in this construct.  

Equation/Function Concepts entail a conceptual understanding of variables, in 

addition to an ability to express generalizations, represent situations algebraically, 

simplify and solve algebraic representations (including linear equalities and inequalities), 

use formulas, and understand the relationship between an equation and its graphical 

representation. These tasks require a proper understanding of algebraic symbolism, 
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including an expanded interpretation of both the plus and equal signs and letter usage in 

algebra. Further ideas relate to the functional relationship between two variables. Skills 

include the ability to determine output of a function, work with functions created by 

familiar formulas, understand rates of change, differentiate between linear and non-linear 

functions, and understand the relationship between a function, its graph, and its 

information presented in tabular form. Since teachers commonly use the analysis and 

generalization of patterns to introduce students to functional relationships, patterning 

ideas are also included under this construct. 

Item Selection 

The developed instrument examines four unique constructs: common content 

knowledge, specialized content knowledge, number concepts, and equation/function 

concepts. A total of 51 items were needed to produce an instrument with optimal testing 

abilities (see discussion on pp. 79-80) across all four constructs. The LMT researchers 

suggest that participants are given one minute of testing time per item (or two minutes 

per stem) administered. Therefore, it was possible to administer the instrument to Math 

130 students during one 50-minute class meeting.  

For each construct, items were selected based on three criteria: (1) the construct 

addressed by the item, (2) the difficulty of the item, and (3) the slope of the item’s 

characteristic curve at its difficulty level. The characteristic curve of an item shows the 

probability that a teacher (based on his/her ability level) will get that item correct (see 

Figure 1). Item difficulty is defined as the point at which the item’s characteristic curve 

crosses the 50% probability level. The item displayed in Figure 1 has a difficulty level of 
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0.0 (see Figure 5), meaning that teachers who perform around 0.0 standard deviation 

units from the mean teacher ability would have a 50% chance of getting the item correct. 

Figure 5. Item characteristic curve for an example item with difficulty level of 0.0. 

 

Items were chosen so that the difficulty levels of those items were distributed well 

across the projected ability range of the sample. Since the ability level of -0.25 standard 

deviations was targeted for best measurement for this instrument, many items with 

difficulty levels between -0.75 to +0.25 standard deviations were chosen. However, some 

items of higher and lower difficulty levels were also included so that the instrument is 

capable of measuring teachers of higher and lower ability levels.  

Lastly, the slope of an item’s characteristic curve at any given ability level shows 

how well the item discriminates among teachers of that ability level. The slope of this 

curve will always be steepest at the item’s difficulty level; therefore, items will always 

best discriminate among teachers whose ability levels are near the difficulty level of the 

item. However, not all items discriminate well. The steeper the slope of an item’s 
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characteristic curve at its difficulty level, the better the item discriminates among teachers 

at ability levels near its difficulty level. For example, the following two characteristic 

curves, shown in Figure 6, illustrate two items which both have a difficulty level of 1.0. 

Both items best discriminate among teachers whose ability levels are close to +1.0 

standard deviations above the mean, however they do not discriminate equally well 

among these teachers.  

Figure 6. Item characteristic curves of two example items that have equal difficulty levels 

(1.0) but vary in their ability to discriminate due to the difference in their 

slopes. 

 

For item 1, a teacher of ability level 0.0 would have a 40% chance of getting the 

item correct, whereas a teacher of ability level 2.0 would have a 60% chance of getting it 

correct. These two probabilities vary little considering the teachers’ ability levels differ 

by two standard deviations. Contrastingly, the probability of a teacher of ability level 0.0 

getting item 2 correct is less than 20%, whereas the probability for a teacher of ability 

level 2.0 increases to 80%. Since it is more likely that teachers of these two ability levels 
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would differ in the correctness of item 2 versus item 1, item 2 would have a stronger 

chance of discriminating between teachers of these two ability levels. 

The slope of the item characteristic curve at a particular ability level is considered 

the amount of information generated by that item for teachers of that ability level. 

Therefore, another way to view an item is by examining its item information curve, 

which illustrates the amount of information generated by the item as a function of teacher 

ability level (see Figures 7 and 8 for the two corresponding curves of the item illustrated 

in Figure 1). Since the item information curve shows the slope of the item characteristic 

curve at any given teacher ability level, it is the derivative of the item characteristic 

curve.  

Figure 7. Example item characteristic curve. 
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Figure 8. Example item information curve. 

 

An item’s characteristic curve will always have its steepest slope at its difficulty 

level, inducing the item’s information curve to have a maximum value corresponding 

with the difficulty level of the item. For example, the item displayed in Figures 7 and 8 

has a predicted difficulty level of 0.0 standard deviations (see Figure 5), therefore 

generating the most information for teachers of that ability level. This item will, however, 

generate very little information about a hypothetical teacher whose ability level is -2.5 

standard deviations. Therefore, preference was given to items whose information curves 

showed the highest production of information (ensuring the selection of items whose 

characteristic curves have steeper slopes). 

Item Analysis 

Initial selected items were located among the scalebuilding spreadsheets that the 

LMT researchers built from the results of their pilot studies. Each spreadsheet is 

constructed with items listed across the top, ordered by difficulty, and a series of 
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hypothetical teacher ability levels (ranging from -3.0 to +3.0 standard deviations) listed 

down the left side. For each item, the projected information generated (or slope of the 

item characteristic curve) is provided for each ability level in table form (an example set 

of seven items can be seen in Figure 9).  

Starting with the lowest ability level provided (-3.0 standard deviations), the 

projected test information generated by the set of selected items for teachers at each 

ability level can be calculated. Since item information curves are additive, the 

information generated at this ability level for each of the selected items can be added 

together in a new column of the spreadsheet. For example, the information generated by 

each of the seven items shown in Figure 9, for a teacher of ability -3.0 standard 

deviations, have been added together in a new column (see Figure 10). This sum (1.073 

units of information) represents the projected total information generated by a measure 

composed of these seven selected items for a person with an ability level of -3.0 standard 

deviations. That is, the test information curve for an exam containing these seven items 

will show a height of 1.073 units at the ability level of -3.0, meaning that the test 

characteristic curve has a slope of 1.073 at the ability value of -3.0 standard deviations. 

The “fill down” feature of Excel easily calculates the projected information 

generated by the selected items for the remaining ability levels. This newly created 

column now represents the functional values of the projected test information curve (for 

an instrument consisting of the selected items), calculated from a two-parameter model 

using both difficulty and slope of the selected items. The test information curve can then 

be graphed relative to teacher ability levels, by selecting both the first column, containing 
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Figure 9. Scalebuilding spreadsheet for seven example items. 

ITEM A2C C15 B1B C2A C18B A7 A5A

SLOPE 0.29781 0.8911 0.95936 0.6343 0.88444 0.38305 0.15323

DIFF -3.26838 -2.53874 -1.69971 -1.16104 -0.85548 1.04519 1.31353

ABILITY LEVEL

-3.0 0.0637843 0.5090076 0.2543733 0.1236716 0.0831797 0.0264969 0.0125633

-2.9 0.0635251 0.5328087 0.288387 0.1340341 0.0954862 0.0280265 0.0127294

-2.8 0.0631867 0.5518155 0.3250672 0.1448758 0.1094041 0.0296279 0.0128945

-2.7 0.0627707 0.565233 0.3640368 0.1561413 0.1250762 0.0313023 0.0130584

-2.6 0.0622792 0.5724744 0.4047197 0.1677581 0.1426357 0.0330505 0.0132209

-2.5 0.0617147 0.5732141 0.446321 0.1796353 0.1621965 0.0348734 0.0133819

-2.4 0.0610798 0.5674186 0.4878246 0.1916636 0.1838418 0.0367711 0.0135412

-2.3 0.0603777 0.5553493 0.528012 0.2037148 0.2076102 0.0387435 0.0136987

-2.2 0.0596116 0.5375383 0.5655091 0.2156435 0.2334793 0.0407902 0.0138543

-2.1 0.0587852 0.5147392 0.5988615 0.2272883 0.2613477 0.0429099 0.0140077

-2.0 0.057902 0.487862 0.6266365 0.2384757 0.2910164 0.0451011 0.0141589

-1.9 0.0569662 0.4579009 0.6475406 0.2490234 0.3221718 0.0473614 0.0143076

-1.8 0.0559816 0.4258633 0.6605407 0.2587461 0.3543712 0.0496879 0.0144538

-1.7 0.0549526 0.3927089 0.6649685 0.2674612 0.3870357 0.0520769 0.0145972

-1.6 0.0538831 0.3593026 0.6605916 0.2749955 0.4194518 0.0545239 0.0147378

-1.5 0.0527776 0.326384 0.6476396 0.2811918 0.4507861 0.0570237 0.0148753

-1.4 0.0516403 0.2945517 0.6267787 0.2859159 0.4801147 0.0595702 0.0150097

-1.3 0.0504753 0.264262 0.5990401 0.2890625 0.5064672 0.0621562 0.0151407

-1.2 0.0492868 0.2358366 0.5657159 0.2905599 0.5288852 0.0647739 0.0152682

-1.1 0.0480788 0.2094776 0.5282386 0.2903735 0.5464887 0.0674145 0.0153921

-1.0 0.0468554 0.1852862 0.4880627 0.2885077 0.5585451 0.0700682 0.0155123

-0.9 0.0456204 0.1632817 0.4465631 0.2850053 0.5645315 0.0727243 0.0156285

-0.8 0.0443774 0.1434208 0.4049592 0.279946 0.5641821 0.0753715 0.0157407

-0.7 0.0431299 0.1256145 0.3642685 0.2734418 0.5575125 0.0779973 0.0158487

-0.6 0.0418814 0.1097424 0.325287 0.2656327 0.5448184 0.0805888 0.0159523

-0.5 0.040635 0.0956654 0.2885923 0.2566798 0.5266483 0.0831324 0.0160516

-0.4 0.0393937 0.0832345 0.2545624 0.246759 0.5037541 0.0856137 0.0161462

-0.3 0.0381602 0.0722982 0.2234038 0.2360541 0.4770278 0.0880183 0.0162362

-0.2 0.0369371 0.062708 0.195184 0.2247503 0.4474325 0.0903313 0.0163214

-0.1 0.0357268 0.0543216 0.1698636 0.2130282 0.4159358 0.0925377 0.0164016

0.0 0.0345315 0.0470056 0.1473259 0.2010591 0.3834538 0.0946228 0.0164769

0.1 0.0333531 0.0406367 0.127402 0.189001 0.3508079 0.0965719 0.0165471

0.2 0.0321935 0.0351021 0.1098918 0.1769957 0.3186971 0.0983711 0.016612

0.3 0.0310542 0.0303 0.0945797 0.1651672 0.2876855 0.1000068 0.0166717

0.4 0.0299366 0.0261389 0.0812471 0.1536209 0.2582009 0.1014666 0.016726

0.5 0.0288419 0.0225375 0.0696804 0.1424433 0.2305439 0.1027391 0.0167748

0.6 0.0277712 0.0194235 0.059677 0.1317032 0.2049017 0.103814 0.0168182

0.7 0.0267255 0.0167333 0.0510487 0.1214524 0.1813661 0.1046826 0.016856

0.8 0.0257054 0.0144108 0.0436232 0.1117276 0.1599521 0.1053377 0.0168882

0.9 0.0247115 0.0124071 0.0372452 0.102552 0.1406154 0.1057739 0.0169148

1.0 0.0237443 0.0106793 0.031776 0.093937 0.1232688 0.1059875 0.0169356

1.1 0.0228041 0.0091902 0.0270927 0.0858842 0.1077956 0.1059767 0.0169508

1.2 0.0218911 0.0079073 0.0230871 0.0783868 0.0940614 0.1057416 0.0169602

1.3 0.0210056 0.0068023 0.0196646 0.0714318 0.0819226 0.1052841 0.0169638

1.4 0.0201473 0.005851 0.0167428 0.0650009 0.0712334 0.1046082 0.0169617

1.5 0.0193164 0.0050322 0.0142504 0.0590721 0.0618506 0.1037194 0.0169539

1.6 0.0185125 0.0043275 0.0121256 0.0536206 0.0536372 0.1026251 0.0169403

1.7 0.0177356 0.0037211 0.0103151 0.04862 0.0464645 0.1013341 0.016921

1.8 0.0169852 0.0031995 0.0087731 0.0440428 0.0402135 0.0998569 0.016896

1.9 0.0162611 0.0027508 0.0074603 0.0398615 0.0347755 0.0982049 0.0168653

2.0 0.0155627 0.0023649 0.006343 0.0360483 0.0300519 0.0963907 0.016829

2.1 0.0148897 0.0020331 0.0053923 0.0325764 0.0259543 0.0944279 0.0167871

2.2 0.0142416 0.0017477 0.0045836 0.0294196 0.0224037 0.0923305 0.0167397

2.3 0.0136178 0.0015024 0.0038959 0.0265532 0.0193302 0.0901132 0.0166869

2.4 0.0130178 0.0012914 0.0033111 0.0239533 0.0166719 0.0877907 0.0166287

2.5 0.012441 0.0011101 0.0028139 0.0215976 0.0143743 0.0853781 0.0165652

2.6 0.0118868 0.0009541 0.0023912 0.0194651 0.0123899 0.0828902 0.0164964

2.7 0.0113545 0.0008201 0.0020319 0.0175364 0.0106767 0.0803414 0.0164225

2.8 0.0108437 0.0007049 0.0017265 0.0157932 0.0091984 0.077746 0.0163436

2.9 0.0103535 0.0006059 0.001467 0.0142188 0.0079234 0.0751176 0.0162597

3.0 0.0098835 0.0005207 0.0012464 0.0127977 0.006824 0.072469 0.016171  
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Figure 10. Calculating the projected information generated by an exam consisting of the 

seven example items. 

ITEM A2C C15 B1B C2A C18B A7 A5A

SLOPE 0.29781 0.8911 0.95936 0.6343 0.88444 0.38305 0.15323

DIFF -3.26838 -2.53874 -1.69971 -1.16104 -0.85548 1.04519 1.31353

ABILITY LEVEL TEST INFO

-3.0 0.0637843 0.5090076 0.2543733 0.1236716 0.0831797 0.0264969 0.0125633 1.073076472

-2.9 0.0635251 0.5328087 0.288387 0.1340341 0.0954862 0.0280265 0.0127294

-2.8 0.0631867 0.5518155 0.3250672 0.1448758 0.1094041 0.0296279 0.0128945

-2.7 0.0627707 0.565233 0.3640368 0.1561413 0.1250762 0.0313023 0.0130584

-2.6 0.0622792 0.5724744 0.4047197 0.1677581 0.1426357 0.0330505 0.0132209

-2.5 0.0617147 0.5732141 0.446321 0.1796353 0.1621965 0.0348734 0.0133819  

Figure 11. Test information curve generated by the seven example items. 

 

ability levels from -3.0 to +3.0 standard deviations, and the test information column 

simultaneously (see Figure 11 for the test information curve created by the seven 

example items).  

For each of the four embedded measures and for the instrument as a whole, the 

resulting hypothetical test information curve needed to be smooth with a maximum  
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occurring around -0.25 standard deviations (due to the projected ability level of the 

sample). Each curve was also checked to assure that the created instrument would 

generate adequate information over the entire range of teacher ability to be measured  

(-2.25 to +1.75 standard deviations were expected to exist among the sample).  To assure 

that the estimated internal reliability of the measure was at least 0.7 for the desired range 

of abilities to be assessed, each test information curve needed to be above 2.0 units (units 

of information = slope of the test characteristic curve) across the designated domain. That 

is, each instrument should be able to reliability discriminate (at a level of 0.7 or higher) 

among teachers in the ability range where its test information curve is at least 2.0 units 

high. For example, the curve illustrated in Figure 11 would not be expected to reliability 

discriminate (at a level of 0.7 or higher) among any teachers since it does not generate at 

least 2.0 units of information for any ability level. The expected range of reliable 

discrimination, as identified from the test information curve, must coincide with the range 

of abilities expected in the sample. Figure 12 shows an example of a hypothetical test 

information curve that would be ideal, compared to the example test information curve 

from Figure 11.  

 If any of these stipulations were not met for the information curves generated for 

each of the four embedded measures and for the overall instrument, items were replaced 

and/or added, and the process outlined above was repeated. Item selection concluded 

once all five test information curves produced satisfactory results, using the least amount 

of items possible (see Figures 13-17 for individual test information curves). The resulting 

51-item instrument was then checked for content validity. Two mathematics education 
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experts verified item coding and item selection in terms of the content to be addressed by 

the embedded measures and the overall instrument. 

Figure 12. Example ideal test information curve for the instrument under development, as 

compared to the test information curve generated by the seven example items. 

 

Figure 13. Test information curve generated by the 51 total items. 
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Figure 14. Test information curve generated by the 31 items that address common content 

knowledge. 

 

Figure 15. Test information curve generated by the 20 items that address specialized 

content knowledge. 
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Figure 16. Test information curve generated by the 29 items that address knowledge of 

numbers. 

 

Figure 17. Test information curve generated by the 23 items that address knowledge of 

equations and functions. 
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Methods 

Instrument Administration and Scoring  

On August 31, 2006, the instrument was administered to each section of Math 130 

during its daily class meeting time. All Math 130 students present across three course 

sections (n = 68) were asked to complete the instrument developed to measure both 

common and specialized content knowledge of prerequisite algebra concepts. Students 

were informed that they were being tested as part of a doctoral dissertation study, but not 

explicitly that they would again be tested at the end of the semester. Participation was 

voluntary and results were confidential (only the last four digits of students’ social 

security numbers were used as a matching scheme). Students were told that since the 

purpose of this study was to assure that teacher preparation courses are preparing students 

to be successful teachers, they should not make any random guesses on the instrument; 

instead, any item for which they felt they could not make an educated guess should be 

left blank. Although students were not given incentives to participate and completion of 

the instrument had no bearing on students’ grades, all but one present student participated 

in the study. After signing a written content form, willing participants were allowed the 

entire 50-minute class period to complete the instrument. The majority of students 

worked on the instrument for 35-50 minutes.  

All completed copies of the instrument were scored using Excel. Each student 

received a total score for the overall number of correct answers provided, in addition to a 

score showing the number of correct answers provided for each of the four individual 

constructs (common content knowledge, specialized content knowledge, content 
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knowledge of numbers, and content knowledge of equations and functions). Pretest 

scores were used to calculate a Cronbach’s Alpha to test the internal reliability of the 

overall instrument and each of the four embedded measures. Using the criteria of ! ! .70 

needed for sample sizes of 60 or more, as suggested by the LMT, all embedded measures, 

as well as the overall instrument, were shown to be reliable (see Table 1 for individual 

reliability results).  

Table 1. Internal Reliability Results. 

 Cronbach’s Alpha 

Total Instrument .8376 (n = 68) 

Common Content Knowledge .7573 (n = 68) 

Specialized Content Knowledge .7279 (n = 68) 

Content Knowledge of Numbers .7196 (n = 68) 

Content Knowledge of Equations/Functions .7413 (n = 68) 

 

The instrument was administered a second time to all Math 130 students, on 

November 28, 2006 (n = 54). Students were reminded of the purpose of the testing and, 

only at this time, informed of the pretest-posttest nature of the study. All present students 

participated in this administration and, again, most worked for 35-50 minutes. Since the 

instrument used in this study had only one form that was administered twice (as both 

pretest and posttest), the second administration date was carefully chosen to ensure that 

test dates were separated by at least three months. When identical forms are completed 

multiple times, test-retest effects can occur. However, the LMT researchers suggest that 

if three or more months pass between two administrations of an exam, these effects will 

be minimal and not substantially affect the outcome of the study.  



86 

A total of 48 students completed both administrations of the exam and were 

therefore included in the sample used to answer the research questions of this study. 

Every participant received five scores for both the pretest and posttest administrations, 

resulting in a total of ten raw scores. Recall that this instrument was designed so that an 

average preservice teacher (ability level of -0.25 SD) would correctly answer 50% of the 

items; and, the results of this study did reflect this percentage. Because of this design, the 

LMT researchers discourage reporting raw scores and/or percentages because they may 

mislead the public about teachers’ overall level of content knowledge. Therefore, all raw 

scores were standardized according to the statistics calculated from the pretest scores for 

each measure (see Table 2 for statistics). Once all raw pretest scores were standardized to 

z-scores, a raw score to z-score conversion table was constructed for each measure. These 

tables were then used to standardize the raw scores resulting from each posttest.  

Table 2. Statistics from Pretest Scores. 

 Pretest 

 Mean Standard Deviation 

Total Instrument 

! 

x preT
= 23.5625  

! 

spreT = 7.906 

Content Knowledge of Numbers 

! 

x preN
=12.8125 

! 

spreN = 4.4895  

Content Knowledge of Equations/Functions 

! 

x preE
= 4.1599 

! 

spreE = 4.1599 

Common Content Knowledge 

! 

x preC
=14.7500  

! 

spreC = 5.0634  

Specialized Content Knowledge 

! 

x preS
= 8.8125 

! 

spreS = 3.6241 

 

Data Analysis 

Standardized instrument scores were examined using a variety of statistical 

analyses to address the range of research questions presented in this study. Variables 
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defined for growth analysis are listed below in Table 3. All data analysis was completed 

using SPSS 11.0 for Mac OS X. Results for each investigation described in this section 

are presented in Chapter 4 (pp. 94-115). 

Table 3. Variables Defined. 

Knowledge Type Variable Measuring Growth 

Total Content Knowledge 

! 

xTi
=

postTi
" x preT

spreT

"
preTi

" x preT

spreT

=
postTi

" preTi

spreT

 

Content Knowledge  

of Numbers 

! 

xNi
=

postNi
" x preN

spreN

"
preNi

" x preN

spreN

=
postNi

" preNi

spreN

 

Content Knowledge 

 of Equations/Functions 

! 

xEi
=

postEi
" x preE

spreE

"
preEi

" x preE

spreE

=
postEi

" preEi

spreE

 

Common Content Knowledge 

! 

xCi
=

postCi
" x preC

spreC

"
preCi

" x preC

spreC

=
postCi

" preCi

spreC

 

Specialized Content Knowledge 

! 

xSi
=

postSi
" x preS

spreS

"
preSi

" x preS

spreS

=
postSi

" preSi

spreS

 

Note: (n = 48) (i = 1, 2,…, 48). 

 

Effects of Math 130 on Mathematical Content Knowledge. To answer the first 

research question, which explores gains in the mathematical content knowledge of 

prerequisite algebra concepts, a matched pairs t-test (t) was used to compare pretest and 

posttest total scores within the single sample. The variable, 

! 

x
T
i

, was defined (see Table 3) 

to calculate the difference in each student’s standardized pretest and posttest total scores 

(i = 1, 2,…,48).  The hypothesis claiming that the true mean difference in standardized  

pretest and posttest total scores, 

! 

µ
T
, is equal to zero was tested against a two-sided 

hypothesis for a non-zero population mean difference. 
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Effects of Math 130 on Prerequisite Algebra Concepts and Type of Content 

Knowledge. Similarly, the second and third research questions address gains in 

knowledge of individual prerequisite algebra constructs (numbers and 

equations/functions) and each type of content knowledge (common versus specialized). 

To address these questions, variables 

! 

x
N
i

, 

! 

x
E
i

, 

! 

x
C
i

, and 

! 

x
S
i

 were similarly defined (see 

Table 3) and the analysis process outlined above was repeated for each of the four 

embedded construct measures. 

Relationship Between Common and Specialized Content Knowledge. The fourth 

research question focuses on the relationship between common and specialized content 

knowledge. Correlation analysis of the standardized scores for common and specialized 

content knowledge obtained from the second administration of the instrument was 

utilized to investigate the relationship between the two types of content knowledge of 

prerequisite algebra concepts for preservice teachers.  

Analysis of Performance on Individual Items. The last research question seeks to 

explore items missed by more or less students than what would be predicted by the item’s 

difficulty level. Therefore, difficulty information for the items was used to create a one-

parameter linear model to predict the number of participants that would incorrectly 

answer each item. This model was built using linear regression on each item’s difficulty 

level and the number of incorrect responses recorded for the item on the posttest. For 

each item on the instrument, a residual (observed number of incorrect answers – number 

of incorrect answers predicted by the regression model) was calculated.  
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The set of residuals was analyzed to identify items outside of the overall pattern. 

These items were identified and grouped according to the sign of their residual values. 

Those with positive residual values represent the group of items missed by more students 

than what was predicted by the linear model. Those with negative residual values, on the 

other hand, represent the group of items missed by less students than predicted. Items in 

each group were analyzed for the content and type of knowledge addressed, and the two 

groups were assessed for any existing trends or patterns.  

To determine whether items with large residuals on the posttest also had large 

residuals on the pretest, a second linear regression was performed using each item’s 

difficulty level to predict the number of incorrect responses given for the item on the first 

administration of the instrument (pretest). The residuals of each item in the two different 

models were compared and examined. It should be noted that at the time of this analysis, 

three items included on the instrument had not yet been piloted by the LMT. Therefore, 

only the 48 items for which difficulty information was accessible were used in the 

calculation of these models. 

Assumptions and Limitations 

Assumptions 

Prerequisite Algebra Concepts. This study relies on the assumption that there are 

nine unique concepts that should be considered prerequisite to a learner’s first algebra 

course (see p. 2), and that these nine concepts can be categorized into two constructs, 

namely number concepts and equation/function concepts (see pp. 71-72). 
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The Theoretical Framework Appropriately Categorizes Knowledge for Teaching 

Mathematics. The Theoretical Framework for Knowledge for Teaching Mathematics (see 

pp. 4-5) was developed for this study and guided the development of the instrument used 

in this study.  

Limitations 

Incoming Student Knowledge. Students at Montana State University are required 

to demonstrate a certain minimum level of prerequisite knowledge prior to taking Math 

130 (see pp. 130-131 for course prerequisite details). Since these standards may differ 

from those imposed at other universities, some limitations exist regarding the populations 

to which results of this study can be generalized. It should also be noted that the course 

prerequisites were not strictly enforced during the semester in which the data for this 

study was collected. Furthermore, prerequisites only define a minimum comprehension 

level and therefore do no clearly identify the true variability that may exist in the 

knowledge students have upon entering this course.  

Pre-Experimental One-Group Pretest-Posttest Design. There was no control group 

that was tested during this study. Therefore, as with all one-group pretest-posttest 

designs, it cannot be conclusively determined if any growth in student knowledge was in 

fact a result of the students having taken the Math 130 course. Many factors may 

influence (positively or adversely) the results of this type of a study; hence, there may be 

additional reasons for observed knowledge growth, such as a testing effect. 
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Blank Responses. Although the students all appeared to have enough time to 

complete both the pretest and the posttest administrations of the instrument, it is possible 

that some blank responses resulted from lack of time or motivation and not necessarily 

from a lack of understanding. Since blank responses were treated the same as incorrect 

responses, it was necessary to analyze the number of blank responses reported for each 

item and each student on both of the administrations. 

No significant linear relationship appeared between the number of blank 

responses for and the order of the questions on the posttest (p < .451, ! = .05). However, 

a significant increase in the number of blank responses with respect to the order of the 

questions was observed on the pretest (p = .001, ! = .05). Although this result implies 

that student may have run out of time when completing the pretest, the slope of the linear 

regression model built to predict the number of blank responses for each item on the 

pretest based on question order was very small (

! 

"
1

= .0686).  

This increase was only observed for the second half of the posttest, which 

included a mixture of common and specialized content knowledge items, but only 

number concepts items (as the first half of the exam was comprised of equation/function 

items). Consequently, if student performance on the pretest was affected by insufficient 

time, the results of the matched pairs t-tests (which calculated posttest scores – pretest 

scores), exploring gains in total knowledge and number concepts knowledge, could be 

influenced. To examine this possibility, the effect of the difference in blank responses per 

student (number of blank responses on posttest – number of blank responses on pretest) 

on difference in incorrect responses per student (number of incorrect responses on 
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posttest – number of incorrect responses on pretest) was investigated, first using all 51 

items and again only using the 29 number concepts items. This effect was found to be 

insignificant for both total scores (p = .368, ! = .05) and number concept scores  

(p = .187, ! = .05). Therefore, the matched pairs t-tests used in this study did not appear 

to be affected by the observed increase in blank responses for the latter items of the 

pretest.   

For the fifth and last research question, the simple linear regression used to 

identify interesting items was built using the number of incorrect answers provided for 

each item on the posttest (where order did not have a significant effect on the number of 

blank responses).  Pretest results were only used to build a second simple linear 

regression model for qualitative comparisons.  
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CHAPTER 4 

RESULTS 

Introduction 

Data collection and analysis for this study was designed to focus on several 

research questions, all with respect to an undergraduate first-semester elementary 

education mathematics content course (Math 130). This chapter presents the results of the 

data analysis, divided into three sections.   

The first section of data analysis contains the results of the five matched pairs  

t-tests which investigate the effects of Math 130 on preservice elementary teachers’ 

mathematical content knowledge, common content knowledge, and specialized content 

knowledge of prerequisite algebra concepts, as well as content knowledge of number 

concepts and equation/function concepts.  

This study also explores the relationship between preservice teacher’s common 

content knowledge and specialized content knowledge of prerequisite algebra concepts. 

Results of the correlation analysis applied to posttest common and specialized content 

knowledge scores is located in the second section of data analysis. 

The final section of data analysis searches for patterns that exist among items 

missed by more or less preservice elementary teachers than predicted on the administered 

instrument. Items’ residuals are analyzed after a discussion on the building of a linear 

model used to predict the number of participants to incorrectly answer each item on the 

posttest based upon its difficulty level. Items with residuals falling outside the overall 
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pattern were identified and analyzed. Note that due to LMT restrictions, specific items 

from the instrument cannot be published. Therefore, items of interest will only be 

discussed in terms of the content and type of knowledge they address. 

Matched Pairs T-tests 

Mathematical Content Knowledge of Prerequisite Algebra Concepts 

 

1. What effects does this course have on preservice teachers’ mathematical 

content knowledge of prerequisite algebra concepts? 

 

To examine growth in the mathematical content knowledge of prerequisite 

algebra concepts, differences in standardized pretest and posttest total scores were 

examined. All total scores were standardized according to the mean pretest total score 

and the standard deviation for all pretest total scores (see Tables 2 and 3, pp. 86-87 in 

Chapter 3, for statistics and variable definitions). 

The mean standardized difference in pretest and posttest total scores within the 

sample was 

! 

x 
T

=
1

48
x

T
i

i

48

" = .6430, indicating that students’ total mathematical content 

knowledge of prerequisite algebra concepts improved an average of .6430 pretest 

standard deviations. Therefore, the students correctly answered an average of 5.08 more 

of the total 51 items on the posttest versus the pretest. A matched pairs two-sided t-test 

using the sample mean standardized difference in total scores was significant, implying 

that the true mean standardized total score difference is believed to be non-zero. 
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Table 4. Total Scores. 

 

 

Standardized Difference in  

Total Scores 

t-test 

! 

t
T

= 9.248  

p-value 

! 

p < .001
*  

Sample Mean Difference 

! 

x 
T

= .6430 

95% Confidence Interval  

for True Mean Difference 

! 

µ
T
" (.5031, .7828) 

* Result was significant using ! = .05. 

 

These results show with 95% confidence that the true mean standardized 

difference in total posttest and pretest scores lies within the interval (.5031, .7828), 

indicating that students improve an average of .5031 to .7828 pretest standard deviations 

on their total mathematical content knowledge of prerequisite algebra concepts upon 

completion of Math 130. This standardized increase translates to students answering an 

average of 3.98 to 6.19 more of the 51 total items correctly on the posttest versus the 

pretest. True mean improvement on the total instrument is therefore believed to fall in the 

range of 7.8% to 12.14%. 

Knowledge of Individual Prerequisite Algebra Constructs 

 

2. What effects does this course have on preservice teachers’ mathematical 

content knowledge of individual prerequisite algebra constructs (number 

concepts and equation/function concepts)? 
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To address individual prerequisite algebra constructs, differences in standardized 

pretest and posttest number scores and differences in standardized pretest and posttest 

equation/function scores were examined. All number scores were standardized according 

to the mean pretest number score and the standard deviation for all pretest number scores. 

Similarly, all equation/function scores were standardized to pretest equation/function 

statistics (see Tables 2 and 3 in Chapter 3 for statistics and variable definitions). 

Number Concepts. The mean standardized difference in pretest and posttest 

number scores within the sample was 

! 

x 
N

=
1

48
x

N
i

i

48

" = .7889, indicating that students’ 

mathematical content knowledge of number concepts improved an average of .7889 

pretest standard deviations. Therefore, the students correctly answered an average of 3.54 

more of the 29 number items on the posttest versus the pretest. A matched pairs two-

sided t-test using the sample mean standardized difference in number scores was 

significant, implying that the true mean standardized number score difference is believed 

to be non-zero.  

These results show with 95% confidence that the true mean standardized 

difference in number posttest and pretest scores lies within the interval (.5857, .9921), 

indicating that students improve an average of .857 to .9921 pretest standard deviations 

on their mathematical content knowledge of number concepts upon completion of Math 

130. This standardized increase translates to students answering an average of 2.63 to 

4.45 more of the 29 number items correctly on the posttest versus the pretest. True mean 
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improvement in terms of number concepts is therefore believed to fall in the range of 

9.07% to 15.36%. 

Table 5. Number Scores. 

 

 

Standardized Difference in  

Number Scores 

t-test 

! 

t
N

= 7.810 

p-value 

! 

p < .001
"  

Sample Mean Difference 

! 

x 
N

= .7889 

95% Confidence Interval  

for True Mean Difference 

! 

µ
N
" (.5857, .9921) 

* Result was significant using ! = .05. 

 

Equation/Function Concepts. The mean standardized difference in pretest and 

posttest equation/function scores within the sample was 

! 

x 
E

=
1

48
x

E
i

i

48

" = .3906, 

indicating that students’ mathematical content knowledge of equation/function concepts 

improved an average of .3906 pretest standard deviations. Therefore, the students 

correctly answered an average of 1.63 more of the 23 equation/function items on the 

posttest versus the pretest. A matched pairs two-sided t-test using the sample mean 

standardized difference in equation/function scores was significant, implying that the true 

mean standardized equation/function score difference is believed to be non-zero.  
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Table 6. Equation/Function Scores. 

 

 

Standardized Difference in  

Equation/Function Scores 

t-test 

! 

t
E

= 4.704  

p-value 

! 

p < .001
"  

Sample Mean Difference 

! 

x 
E

= .3906  

95% Confidence Interval  

for True Mean Difference 

! 

µ
E
" (.2236, .5577)  

* Result was significant using ! = .05. 

 

These results show with 95% confidence that the true mean standardized 

difference in equation/function posttest and pretest scores lies within the interval (.2236, 

.5577), indicating that students improve an average of .2236 to .5577 pretest standard 

deviations on their mathematical content knowledge of equation/function concepts upon 

completion of Math 130. This standardized increase translates to students answering an 

average of .93 to 2.32 more of the 23 equation/function items correctly on the posttest 

versus the pretest. True mean improvement in terms of equation/function concepts is 

therefore believed to fall in the range of 4.04% to 10.09%. 

Common and Specialized Content Knowledge  

of Prerequisite Algebra Constructs  

 

3. What effects does this course have on preservice teachers’ common content 

knowledge and specialized content knowledge of prerequisite algebra 

concepts? 
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To investigate individual types of content knowledge,  differences in standardized 

pretest and posttest common content knowledge scores and differences in standardized 

pretest and posttest specialized content knowledge scores were examined. All common 

content knowledge scores were standardized according to the mean pretest common 

content knowledge score and the standard deviation for all pretest common content 

knowledge scores. Similarly, all specialized content knowledge scores were standardized 

to pretest standardized statistics (see Tables 2 and 3 in Chapter 3 for statistics and 

variable definitions). 

Common Content Knowledge. The mean standardized difference in pretest and 

posttest common content knowledge scores within the sample was 

! 

x 
C

=
1

48
x

C
i

i

48

" = .5431, indicating that students’ common content knowledge of 

prerequisite algebra concepts improved an average of .5431 pretest standard deviations. 

Therefore, the students correctly answered an average of 2.75 more of the 31 common 

content knowledge items on the posttest versus the pretest. A matched pairs two-sided  

t-test using the sample mean standardized difference in common content knowledge 

scores was significant, implying that the true mean standardized common content 

knowledge score difference is believed to be non-zero.  
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Table 7. Common Content Knowledge Scores. 

 

 

Standardized Difference in  

Common Content Knowledge Scores 

t-test 

! 

t
C

= 6.192 

p-value 

! 

p < .001
"  

Sample Mean Difference 

! 

x 
C

= .5431 

95% Confidence Interval  

for True Mean Difference 

! 

µ
C
" (.3667, .7196)  

* Result was significant using ! = .05. 

 

These results show with 95% confidence that the true mean standardized 

difference in common content knowledge posttest and pretest scores lies within the 

interval (.3667, .7196), indicating that students improve an average of .3667 to .7196 

pretest standard deviations on their common content knowledge of prerequisite algebra 

concepts upon completion of Math 130. This standardized increase translates to students 

answering an average of 1.86 to 3.64 more of the 31 common content knowledge items 

correctly on the posttest versus the pretest. True mean improvement in common content 

knowledge is therefore believed to fall in the range of 6.0% to 11.74%. 

Specialized Content Knowledge. The mean standardized difference in pretest and 

posttest specialized content knowledge scores within the sample was 

! 

x 
S

=
1

48
x

S
i

i

48

" = .6438, indicating that students’ specialized content knowledge of 

prerequisite algebra concepts improved an average of .6438 pretest standard deviations. 
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Therefore, the students correctly answered an average of 2.33 more of the 20 specialized 

content knowledge items on the posttest versus the pretest. A matched pairs two-sided  

t-test using the sample mean standardized difference in specialized content knowledge 

scores was significant, implying that the true mean standardized specialized content 

knowledge score difference is believed to be non-zero.  

Table 8. Specialized Content Knowledge Scores. 

 

 

Standardized Difference in  

Specialized Content Knowledge Scores 

t-test 

! 

t
S

= 5.198 

p-value 

! 

p < .001
"  

Sample Mean Difference 

! 

x 
S

= .6438  

95% Confidence Interval  

for True Mean Difference 

! 

µ
S
" (.3946, .8930)  

* Result was significant using ! = .05. 

 

These results show with 95% confidence that the true mean standardized 

difference in specialized content knowledge posttest and pretest scores lies within the 

interval (.3946, .8930), indicating that students improve an average of .3946 to .8930 

pretest standard deviations on their specialized content knowledge of prerequisite algebra 

concepts as result of taking Math 130. This standardized increase translates to students 

answering an average of 1.43 to 3.24 more of the 20 specialized content knowledge items 

correctly on the posttest versus the pretest. True mean improvement in specialized 

content knowledge is therefore believed to fall in the range of 7.15% to 16.18%. 
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Correlation Analysis 

4. What relationship, if any, exists between preservice elementary teachers’ 

common and specialized content knowledge of prerequisite algebra concepts?  

 

To investigate the possible relationship between common and specialized content 

knowledge, correlation analysis was applied to the total raw common and specialized 

content knowledge scores attained during the second administration of the instrument. A 

resulting Pearson’s correlation coefficient of .716 shows a statistically significant positive 

relationship (p < .001, ! = .05) between preservice elementary teachers common and 

specialized content knowledge of prerequisite algebra concepts. 

Linear Regression 

5. What patterns, if any, exist among items missed by more or less preservice 

elementary teachers than predicted on the instrument measuring mathematical 

content knowledge of prerequisite algebra concepts? 

 

First, a linear model was built from the results of the second administration of the 

instrument to predict the number of preservice elementary teachers that would incorrectly 

answer each item on the posttest. Residuals were then analyzed and items that were 

missed by notably more or less participants than predicted by the model were identified 

and explored for any existing patterns in content area and/or knowledge type. A second 
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liner model was then built from the results of the first administration so that student 

performance on the isolated items, on the pretest, could also be investigated. 

Building a Linear Model from Posttest Data 

Items with higher difficulty levels will tend to have more students answering them 

incorrectly (F = 66.945, df = 1, 46, p < .001). In fact, an item’s difficulty level alone was 

found to account for over 59% (r
2
 = .593) of the variability in the number of participants 

that incorrectly answer an item on the posttest. Therefore, the researcher was able to 

construct a one-parameter linear model, 

! 

ywrong = "o + "
1
xdiff + # (# ~ N(0,$ 2

) , based on 

difficulty alone, to predict the number of participants that would incorrectly answer each 

item on the posttest. The resulting regression model, 

! 

ˆ y wrong = 23.665 + 8.658xdiff , with 

mean square error of 46.186, was used to identify items of interest (see Tables 9 and 10 

for model details and Figure 18 for model fit). 

Table 9. Posttest Simple Linear Model Summary.
ab

 

 Model Statistics 

R 

! 

r = .770 

R
 
Square 

! 

r
2

= .593 

 a. Predictors: (Constant), Difficulty. 

 b. Dependent Variable: Number of Wrong Answers on Posttest. 
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Table 10. Posttest Simple Linear Model Coefficients.
a
 

Unstandardized Coefficients 
 

B Std. Error 
t Sig. 

(Constant) 23.665 1.030 22.984 

! 

p < .001
"  

Difficulty 8.658 1.058 8.182 

! 

p < .001
"  

a. Dependent Variable: Number of Wrong Answers on Posttest. 

* Result was significant using ! = .05. 

Figure 18. Posttest data and resulting linear regression model, with items of interest 

circled (see following discussion for item selection). 
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The pilot data suggested that significant linear relationships exist between the 

difficulty of an item and the number of incorrect answers provided for that item, as well 

29 
7 

11b 

8a 

6 
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as between item slope and number of incorrect answers.  Based on pilot results, originally 

both difficulty and slope were used as predictors to create a two-parameter linear model, 

! 

ywrong = "o + "
1
xdiff + "

2
xslope + # (# ~ N(0,$ 2

)) , to predict the number of participants that 

would incorrectly answer each item on the instrument. However, the data collected 

during the second administration of this study’s instrument suggests that the slope of an 

item is not significantly linearly related to the number of incorrect answers given for an 

item (p = .126, ! = .05). In fact, when slope was removed from the linear model, mean 

square error only slightly increased (to 46.186 from 44.788) and r
2
 only slightly 

decreased (from .614 to .593), showing a very small reduction in the predictive power of 

the one-parameter linear model in comparison to the two-parameter model.  

After the one-parameter linear model for the posttest was constructed, both the 

normal quantile plot for the model (see Figure 19) and a scatterplot showing standardized  

Figure 19. Normal quantile plot of posttest standardized residuals. 
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Dependent Variable: Number of Wrong Answers on Posttest. 
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predicted values plotted against standardized residuals (see Figure 20) were checked to 

assure linear model assumptions were all met. No indications of serious violations of 

linearity, constant variance, or normality of residuals, were found. 

Figure 20. Scatterplot of posttest standardized residuals versus standardized predicted 

values. 
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Dependent Variable: Number of Wrong Answers on Posttest.  

Isolating Items of Interest 

Based on model, 

! 

ˆ y wrong = 23.665 + 8.658xdiff  created from posttest data, the 

residuals (observed number of incorrect answers – number of incorrect answers predicted 

by the regression line) were calculated for each item. The set of residuals were then 

analyzed for outliers, by identifying residuals lying more than 1.5 times the interquartile 

range above the third quartile or below the first quartile of residuals. Residual values  
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ranged from -11.44 to 19.54, with an interquartile range of 8.8992 (Q3 – Q1 = 4.3868 –  

(-4.5124) =  8.8992). Only question #29 had a residual, 

! 

e
29

=19.54  (

! 

z
e
29

= 2.88), far 

enough from the overall pattern to be identified as an outlier (this item has been indicated 

by a thick, dark circle in Figure 18). 

All residuals were then arranged in descending order according to their distances 

from zero, and five of the 51 items (10% of the total) whose residuals fell farthest from 

zero were isolated as “items of interest” (indicated by the five circles in Figure 18). See 

Table 11 for details regarding the five isolated, interesting items. The main ideas of these 

five items will be discussed later in general terms, however due to LMT regulations 

regarding non-released items, specifics entailed in the questions themselves cannot be 

discussed. 

Table 11. Interesting Items. 

 Q #29 Q #7 Q #6 Q #11b Q #8a 

difficulty 

! 

xdiff = "1.063 

! 

xdiff = "0.3328 

! 

xdiff = "0.375 

! 

xdiff = "0.604  

! 

xdiff = "1.1232 

wrong (obs) 

! 

ywrong = 34  

! 

ywrong = 34  

! 

ywrong = 32  

! 

ywrong = 7  

! 

ywrong = 25 

wrong (pred) 

! 

ˆ y wrong =14.46 

! 

ˆ y wrong = 20.78 

! 

ˆ y wrong = 20.42 

! 

ˆ y wrong =18.44  

! 

ˆ y wrong =13.94  

residualpost 

! 

e
29

=19.54  

! 

e
7

=13.22  

! 

e
6

=11.58  

! 

e
11b

= "11.44  

! 

e
8a

=11.06 

std. residual 

! 

z
e
29

= 2.88  

! 

z
e
7

=1.94  

! 

z
e
6

=1.70 

! 

z
e
11b

= "1.68 

! 

z
e
8a

=1.63 

knowledge specialized common common common specialized 

construct numbers 
equations/ 

functions 

equations/ 

functions 

equations/ 

functions 

equations/ 

functions 

content 
proportions/ 

ratios 

representing 

functions 

writing 

functions 
linear graphs 

functions in  

context 
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Building a Linear Model from Pretest Data 

To further investigate student performance on these five items identified as 

having residuals falling outside of the overall pattern, including the one aforementioned 

outlier, a second linear regression model was created using the pretest data. This one-

parameter linear model, 

! 

ywrong = "o + "
1
xdiff + # (# ~ N(0,$ 2

) , based on difficulty, predicts 

the number of participants that would incorrectly answer each item on the pretest (see 

Tables 12 and 13 for model details). Figure 21 shows a scatterplot of the pretest data and 

the fit of the resulting regression model, 

! 

ˆ y wrong = 28.747 + 9.005xdiff . Additionally, the 

five items identified earlier (questions #6, #7, #8a, #11b, and #29) have been marked on 

Figure 21, with circles.  

Table 12. Pretest Simple Linear Model Summary.
ab

 

 Model Statistics 

R 

! 

r = .803 

R
 
Square 

! 

r
2

= .645 

 a. Predictors: (Constant), Difficulty. 

 b. Dependent Variable: Number of Wrong Answers on Pretest. 

 

Table 13. Pretest Simple Linear Model Coefficients.
a
 

Unstandardized Coefficients 
 

B Std. Error 
t Sig. 

(Constant) 28.474 .959 29.962 

! 

p < .001
"  

Difficulty 9.005 .986 9.133 

! 

p < .001
"  

a. Dependent Variable: Number of Wrong Answers on Pretest. 

* Result was significant using ! = .05. 
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Figure 21. Pretest data and resulting linear regression model. 
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This model’s normal quantile plot (see Figure 22) and a scatterplot showing 

standardized predicted values plotted against standardized residuals (see Figure 23) were 

checked to assure linear model assumptions were all met. No indications of serious 

violations of linearity, constant variance, or normality of residuals, were found. When the 

set of residuals was analyzed, question #29 was again the only item with a residual value 

identified as an outlier. 

29 

7 

11b 

8a 

6 
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Figure 22. Normal quantile plot of pretest standardized residuals. 
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Dependent Variable: Number of Wrong Answers on Pretest. 

Figure 23. Scatterplot of pretest standardized residuals versus standardized predicted 

values. 
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Dependent Variable: Number of Wrong Answers on Pretest.  
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Comparison of Pretest and Posttest Linear Models 

Two simple linear regression models were built using the difficulty level of each 

item and the number of incorrect answers that were given by preservice teachers for each 

item on the pretest and posttest administrations of the instrument. When these two models 

were graphed simultaneously on the same axis, the resulting lines appeared to have 

roughly parallel slopes (mpre = 9.005, mpost = 8.658) but moderately distinct y-intercepts 

(y-intpre = 28.747, y-intpost = 23.665) (see Figure 24). To test if the difference that 

appeared between the two simple linear regression models was significant, a general 

linear model, 

! 

ywrong = "o + "
1
Ipre + "

2
xdiff + "

3
Ipre xdiff + # (# ~ N(0,$ 2

), was constructed 

using an indicator variable, 

! 

Ipre , to denote if a given score resulted from a pretest or 

posttest (1 for pretest, 0 for posttest) (see Table 14 for model details). 

Figure 24. Pretest and posttest simple linear regression models graphed simultaneously. 
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Table 14. General Linear Model Coefficients.
a
 

Unstandardized Coefficients 
 

B Std. Error 
t Sig. 

y-intpost 23.6649 0.9952 23.780 

! 

p < .001
"  

y-intpre – y-intpost 5.0819 1.4074 3.611 

! 

p < .001
"  

mpost 8.6582 1.0228 8.465 

! 

p < .001
"  

mpre – mpost 0.3472 1.4464 0.240 

! 

p = .810821 

a. Dependent Variable: Number of Wrong Answers. 

* Result was significant using ! = .05. 

 

Results of the general linear model showed that there was not a significant 

difference in the slopes of the pretest and posttest simple linear regression models,  

mpre = 9.005 and mpost = 8.658 (p = .810821, ! = .05). However, there was a significant 

difference in their y-intercepts, y-intpre = 28.747 and y-intpost = 23.665 (

! 

p < .001, ! = .05). 

This significant, downward shift observed between the pretest and posttest models further 

supports the significant increase in overall mathematical content knowledge of 

prerequisite algebra skills that was detected earlier (see analysis for research question #1 

on pp. 94-95). 

Interesting Items 

The five interesting items were grouped according to the sign of their residual 

value and the two groups were analyzed for any existing patterns.  Again, only the 

general idea focused on by each item will be discussed. Recall that LMT regulations 

regarding non-released items prohibit discussing the specifics entailed in the questions 

themselves. 
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Outlying Residual. The only item whose residual was far enough from zero to be 

identified as an outlier in both models was question #29. This question involves using a 

part-to-part ratio and one partial quantity to calculate the total quantity (number 

concepts). To investigate specialized content knowledge, this item asks the person not to 

solve the problem, but to analyze two students’ responses to the question and determine if 

either, neither, or both are on a correct solution path. Although both students’ methods 

could eventually lead to a correct answer, 38 (out of the 48) participants erroneously 

answered that either one or both of the students were incorrect on the pretest, and 34 on 

the posttest. 

Since this item had extremely large positive residuals in both models, it is 

apparent that this item was very difficult for students prior to taking the course and 

remained difficult even after course completion. It appears that upon entering this course, 

students did not have adequate understanding of the concepts in question #29, and that 

this course did not successfully address this particular gap in student knowledge. 

Positive Residuals. The remaining three items (questions #6, #7, and #8a) with 

alarmingly high positive residual values (

! 

e
7

=13.22  (

! 

z
e
7

=1.94 ),

! 

e
6

=11.58  (

! 

z
e
6

=1.70), 

and 

! 

e
8a

=11.06 (

! 

z
e
8a

=1.63)), represent the other questions missed by more students on 

the posttest than what was predicted by the posttest linear model. Note that all of these 

items also had positive residuals resulting from the pretest linear regression model, 

showing that these questions were also missed by more students on the pretest than what 
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was predicted by the pretest linear model. It appears that the content covered in these 

items were substantially difficult for students upon entering and exiting this course. 

Although a slight improvement was observed for question #6 (34 incorrect 

answers on pretest, 32 incorrect answers on posttest), this item’s residual increased from 

8.63 (pretest) to 11.58 (posttest). This is due to the general shift that was observed 

between the pretest linear model and the posttest linear model (see Figure 24). Recall that 

there was a significant decrease in the y-intercept of the posttest linear model when 

compared to the pretest linear model. The improvement noted for question #6 was not 

large enough to compensate for this difference and resulted in this item having an 

increased residual value. A similar residual increase was noted for question #7, even 

though the exact same number of incorrect responses, 34, were given for this item on 

both the pretest and posttest. Again, due to the significant difference in the pretest and 

posttest linear models, this item’s residual increased from 8.25 (pretest) to 13.22 

(posttest). In contrast, a decrease was observed in the positive pretest and posttest 

residual values for question #8a, 18.63 and 11.06 respectively. For this item, however, 

there was an increase in the number of incorrect answers given on the posttest versus the 

pretest (25 incorrect on posttest, 20 incorrect on pretest).  Even though the posttest 

residual was smaller, it appears that students actually did worse on this item on the 

posttest than they did on the pretest. 

Of these three troublesome items, two are common content knowledge questions 

(questions #6 and #7) and one is a specialized content knowledge question (question 

#8a). All three questions, however, were categorized as addressing equation/function 
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concepts. These questions, on which students performed worse than predicted on both the 

pretest and posttest, deal with a variety of aspects of reading, writing, and representing 

formulas and functions and understanding equations being modeled within word problem 

contexts. Although this finding appeared to show some consistency among the type of 

concepts missed by more students than expected, it is interesting to note that this does not 

agree with the fact that the outlying positive residual for each administration resulted 

from a question which addresses number concepts.  

Negative Residual. Only one of the items isolated from the posttest model had a 

dramatically small negative residual value, question #11b (

! 

e
11b

= "11.44  (

! 

z
e
11b

= "1.68)). 

Since this question was missed by less students on the posttest than predicted, students 

actually performed better than expected on this item. It should be noted, however, that 

this item also had a negative residual value, -11.31, on the pretest. Since students also 

performed better than expected on this item on the pretest, it appears that students already  

had substantial mastery of this content prior to taking this course. Question #11b 

addresses common content knowledge of equation/function concepts. This item provides 

a linear graph and asks about the relationship displayed between the two variables. 

Summary of Important Results 

1. Upon completion of Math 130, a statistically significant increase was 

identified in preservice elementary teachers’ total mathematical content 

knowledge of prerequisite algebra skills. 
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2. Upon completion of Math 130, a statistically significant increase was 

identified in preservice elementary teachers’ common content knowledge of 

prerequisite algebra skills. 

3. Upon completion of Math 130, a statistically significant increase was 

identified in preservice elementary teachers’ specialized content knowledge of 

prerequisite algebra skills. 

4. Upon completion of Math 130, a statistically significant increase was 

identified in preservice elementary teachers’ content knowledge of number 

concepts. 

5. Upon completion of Math 130, a statistically significant increase was 

identified in preservice elementary teachers’ content knowledge of 

equation/function concepts.  

6. A statistically significant positive correlation was found between preservice 

elementary teachers common content knowledge and specialized content 

knowledge of prerequisite algebra concepts (r = .716). 

7. Using a linear model to predict the number of students to incorrectly answer 

each item based on each item’s difficulty level, four items were identified as 

resulting in substantially worse student performance on the posttest than 

expected. The item with the most extreme, outlying residual asks preservice 

teachers to analyze students’ work (specialized content knowledge) on ratios 

and proportions (number concepts). The remaining three items address a 

combination of common and specialized content knowledge of 
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equation/function concepts.  These items test preservice elementary teachers’ 

abilities to read, write, recognize, and represent a variety of formulas and 

functions. One item resulted in substantially better student performance on the 

posttest than predicted. This item addresses common content knowledge of 

the relationship between two variables displayed by a linear graph 

(equation/function concepts). 
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CHAPTER 5 

CONCLUSIONS 

Introduction 

This chapter begins with an overview of the purpose and methodology of this 

study. Research results are first summarized in regards to the five research questions and 

then discussed more thoroughly with their implications and relation to current literature. 

Recommendations for practice are presented along with directions for future research. 

Lastly, conclusion for this study is provided. 

Overview of the Study 

More and more district and state high school graduation requirements are 

including algebra, increasing the need for all students, no longer just the college-bound, 

to be algebra proficient (Fey, 1989). Despite the obvious significance of algebra on a 

national scale, the National Assessment of Educational Progress shows a deficiency in 

the algebra achievement of U.S. students (Chazan & Yerushalmy, 2003). Research 

suggests that for students to succeed in Algebra I (or an equivalent first algebra course), it 

is vital they master prerequisite algebra concepts throughout their K-8 mathematics 

education: (1) numbers (and numerical operations), (2) ratios/proportions, (3) the order of 

operations, (4) equality, (5) patterning, (6) algebraic symbolism (including letter usage), 

(7) algebraic equations, (8) functions, and (9) graphing (Welder, 2006).  
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Research illustrates that student achievement is affected by teachers’ knowledge, 

requiring elementary and middle school (K-8) teachers to have satisfactory knowledge of 

prerequisite algebra concepts (Fennema & Franke, 1992; Greenwald et al., 1996). This 

study’s theoretical framework for the knowledge for teaching mathematics suggests that 

the mathematical content knowledge needed for teaching consists of specialized content 

knowledge in addition to common content knowledge (Ball, 2003, 2006; Hill & Ball, 

2004; Hill et al., 2004; Rowan et al., 2001; Shulman, 1986). Specialized mathematical 

content knowledge extends beyond solving mathematical problems to encompass how 

and why mathematical procedures work and an awareness of structuring and representing 

mathematical content for learners.  

This study investigated the effects of an undergraduate mathematics content 

course for preservice elementary teachers on their common and specialized content 

knowledge of prerequisite algebra concepts, using a pre-experimental one-group pretest-

posttest design. A quantitative, 51-item, multiple-choice instrument, developed 

specifically to measure both types of content knowledge with respect to prerequisite 

algebra concepts, was conscientiously constructed from the Learning Mathematics for 

Teaching Project’s Content Knowledge for Teaching Mathematics Measures question 

bank (LMT, 2006). This instrument was administered to all students enrolled in Math 

130: Mathematics for Elementary Teachers I (n = 48), at Montana State University, 

during the first and last weeks of the fall semester of 2006.  

Five matched pairs t-tests, comparing pretest and posttest scores within the single 

sample, were used to investigate the effects of Math 130 on preservice elementary 
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teachers’ overall mathematical content knowledge, common content knowledge, and 

specialized content knowledge of prerequisite algebra concepts, as well as mathematical 

content knowledge of number concepts and equation/function concepts. Correlation 

analysis was applied to posttest common and specialized content knowledge scores to test 

the relationship between the common and specialized content knowledge of preservice 

teachers. Lastly, a one-parameter linear model was constructed to predict the number of 

participants to incorrectly answer each item on the instrument, based on item difficulty. 

Residuals were calculated and the five items whose residuals landed farthest from the 

least squares regression line were identified. These items, marked as being missed by 

notably more or less students than predicted by the linear model, were analyzed in terms 

of the content and type of knowledge they address. 

Summary of Research Results 

Research Questions 1-3: Effects on Prerequisite Algebra Knowledge 

Upon completion of Math 130, statistically significant increases were identified in 

all five tested areas of preservice elementary teachers’ knowledge of prerequisite algebra 

skills. 

• Total mathematical content knowledge of prerequisite algebra concepts 

improved an average of .6430 pretest standard deviations; true mean 

improvement on the total instrument is believed to fall in the range of 7.8% to 

12.14%. 
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• Mathematical content knowledge of number concepts improved an average of 

.7889 pretest standard deviations; true mean improvement in terms of number 

concepts is believed to fall in the range of 9.07% to 15.36%. 

• Mathematical content knowledge of equation/function concepts improved an 

average of .3906 pretest standard deviations; true mean improvement in terms 

of equation/function concepts is believed to fall in the range of 4.04% to 

10.09%. 

• Common content knowledge of prerequisite algebra concepts improved an 

average of .5431 pretest standard deviations; true mean improvement in 

common content knowledge is believed to fall in the range of 6.0% to 11.74%. 

• Specialized content knowledge of prerequisite algebra concepts improved an 

average of .6438 pretest standard deviations; true mean improvement in 

specialized content knowledge is believed to fall in the range of 7.15% to 

16.18%. 

Research Question 4: Relationship Between Common  

and Specialized Content Knowledge  

A Pearson’s correlation coefficient of .716 showed a statistically significantly  

(p < .001, ! = .05) positive relationship between the preservice elementary teachers’ 

common and specialized content knowledge of prerequisite algebra concepts. 
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Research Question 5: Analyzing Interesting Items  

One item resulted in substantially better student performance on the posttest than 

predicted, whereas four items were identified as resulting in substantially worse student 

performance on the posttest than expected. 

Unchallenging Item (#11b). Based on the difficulty level of question #11b,  

-0.604, the linear model constructed from this study’s posttest data predicted 18.44 

incorrect responses to be produced. However, only 7 of the 48 participants incorrectly 

answered this item or left it blank on the posttest. This question addresses common 

content knowledge of the relationship between two variables displayed by a linear graph 

(equation/function concept).  

Troublesome Item (Outlier #29). This item, the only true outlier with posttest 

residual  

! 

e
29

=19.54 , asks preservice teachers to analyze students’ work (specialized 

content knowledge) on ratios and proportions (number concepts). The posttest linear 

model predicted 14.46 incorrect answers, based on the item’s difficulty level of -1.063. 

Alarmingly, 34 of the 48 participants either did not answer or incorrectly answered this 

item on the posttest.  

Question #29 shows the works of two students who were asked to use a part-to-

part ratio and one partial quantity to solve for the total quantity. Each student approaches 

the problem in a different way and the beginning steps of each one’s work is shown. The 

item then asks the preservice teacher to evaluate if either, neither, or both students could 

potentially use their chosen approach to correctly solve the problem. Although both 
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solution paths could be used to successfully answer the posed question, 21 participants 

believed that only one of the two approaches was valid, nine thought neither approach 

would work, and three did not provide an answer to this item.  

Troublesome Items (Non-Outliers #6, #7, and #8a). Difficulty levels of -0.375,  

-0.3328, and -1.1232, for questions #6, #7, and #8a respectively, created predictions of 

20.42, 20.78, and 13.94 incorrect responses on the posttest. However, the number of 

participants that did not respond or incorrectly responded to questions #6, #7, and #8a on 

the posttest were 32, 34, and 25, respectively. These three items address a combination of 

common and specialized content knowledge of equation/function concepts.  These items 

test preservice elementary teachers’ abilities to read, write, recognize, and represent a 

variety of functions and formulas. 

Discussion of Results 

Number Concepts 

Mastery of number concepts and numerical operations are fundamental to a 

student’s ability to learn algebra. Booth (1984) claims that elementary algebra students’ 

difficulties are caused by confusion surrounding computational ideas, including inverse 

operations, associativity, commutativity, distributivity, and the order of operations 

convention. These misconstrued ideas are among basic number rules essential for 

algebraic manipulation and equation solving (Watson, 1990).  

To address the importance of number concepts, the instrument constructed for this 

study assessed knowledge of several types and forms of numbers and numerical 
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operations. In fact, items specifically addressed whole number operations, subtraction of 

integers, representations and explanations of fractions and fraction operations, decimal 

representations, prime numbers, and the order of operations. 

This study showed a significant growth in preservice teachers’ mathematical 

content knowledge of number concepts. This finding is consistent with the design of the 

Math 130 course curriculum, which is constructed to focus on numbers and numerical 

operations. Therefore, it is not surprising that the largest increase in knowledge was in the 

field of numerical concepts. Math 130 does appear to improve preservice teachers’ 

knowledge of the content it purports to teach. 

Ratios and Proportions 

Although it is clear that students achieved a significant growth in overall number 

knowledge over the course of the semester, it is important to note that the only item with 

a large enough residual value to be identified as an outlier (question #29) deals with 

ratios and proportions, a number concept. In fact, 71% of the participants incorrectly 

answered this item on the posttest, for which the linear model predicted only 29% of 

answers to be wrong. Only two additional items on the instrument (questions #9 and #16) 

addressed similar ideas. Thirty-three incorrect responses (out of 48) were given for 

question #16 on the posttest, when only 24.27 were predicted, resulting in this item 

having the seventh largest positive residual (

! 

e
16

= 8.73). Furthermore, although the 

residual value for question #9 was nearly zero (

! 

e
9

= 0.31), 41 of the 48 preservice 

teachers answered this item incorrectly on the posttest(

! 

ˆ y wrong9

= 40.69).  Performance on 
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the three items addressing ratios and proportions (questions #9, #16, and #29) collectively 

suggest that preservice teachers’ knowledge is lacking in this field. 

The Math 130 curriculum, including both text material and in-class activities, 

indicates that ratios and proportion ideas were thoroughly discussed during two class 

days. The students cooperatively completed an extensive activity on “Exploring 

Proportion,” (Lappen et al., 1998, pp. 7, 27-28, 32, 44-45, 53-54, 57-58) which helped 

them practice their abilities to interpret and compare ratios, estimate large populations, 

and work with population density. Furthermore, this material was covered early in 

November 2006, only four weeks prior to the posttest administration of this study’s 

instrument. Although students were exposed to ratios and proportions throughout the 

Math 130 curriculum,  it appears that they did not achieve full mastery of this content or 

at least were not able to apply their knowledge to the questions on this instrument. 

This finding is not surprising, however. Not only have ratios and proportions been 

found to be notoriously difficult for children and adolescents (Post et al., 1988),  this 

content remains troublesome for many college students (Ilany, Keret, & Ben-Chaim, 

2004). In fact, “there is evidence that a large segment of our society never acquires 

fluency in proportional thinking” (Hofer, 1988, p. 285). The results of this study support 

the numerous research findings that have indicated “many gaps in the content knowledge 

of preservice and inservice teachers in mathematical subjects taught in elementary and 

middle schools, including the topics of ratio and proportion” (Ilany et al., 2004, p. 81). 

Perhaps this misunderstanding can be attributed to the fact that proportional reasoning 

requires a solid understanding of several rational number concepts including order and 
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equivalence, the relationship between a unit and its parts, the meaning and interpretation 

of ratio, and various division issues (Post et al., 1988). The area of integer division, and 

hence fractions, is known to be a source of student errors (Kieran, 1988). In fact, Wu 

(2001) believes that K-12 teachers are not currently teaching fractions at a deep enough 

level to prepare students for algebra. 

Misconceptions in the area of ratio and proportion are particularly noteworthy due 

to their importance in current mathematics curricula (Lo & Watanabe, 1995). In fact, 

proportionality is considered to be an important contributor to students’ development of 

pre-algebraic understanding. Because proportions can provide wonderful examples of 

naturally occurring linear functions, Post et al. (1988) feel that proportionality has the 

ability to connect common numerical experiences and patterns, with which students are 

familiar, to more abstract relationships in algebra. Proportions can also be used to 

introduce students to algebraic representation and variable manipulation in a way that 

parallels their knowledge of arithmetic.  

 Due to the significance of ratios and proportions, which are commonly 

misunderstood, one might consider increasing the number of days dedicated to the study 

of this topic in the Math 130 curriculum. Another suggestion is to have students 

repeatedly use ratio and proportion ideas by embedding them within subsequent course 

material, instead of strictly designating two days for the study of this content. Regardless 

of how the curriculum is structured, the work of Ilany et al. (2004) demands that the 

teaching of ratio and proportion topics to preservice teachers be given careful 

consideration. Ilany et al. developed a model for teaching ratio and proportion topics in 



127 

mathematics teacher education courses. Their model incorporates “authentic investigative 

activities with five types of activities: Introductive activities, investigative activities 

dealing with ratio, dealing with rate, dealing with scaling, and dealing with indirect 

proportion” (Ilany et al., 2004, p. 82). These activities, which involve small and large 

integer numbers, fractions, decimals, and percents, include making quantitative and 

qualitative numerical comparisons between ratios and finding a missing value. Ilany et al. 

have successfully shown that their model has led to preservice teachers acquiring both 

mathematical content knowledge and pedagogical-didactical knowledge. Therefore, the 

selection and implementation of course activities may be an important piece of 

addressing preservice teachers’ misunderstandings about ratios and proportions. 

It is worth noting that each of the two class days dedicated to the study of ratios 

and proportions were followed by a day on which the university did not hold classes. 

Ratios and proportion content was covered on Monday, November 6, and Thursday, 

November 9, which were immediately followed by Election Day and Veteran’s Day, 

respectively. It is unclear whether the disconnected way this material was presented had 

any effect on students’ ability to answer the proportion items on the administered 

instrument (particularly question #29). With the week’s interrupted course schedule, it is 

also possible that some students were absent for a portion of or the entire week and 

consequently missed both days dedicated to this topic. However, due to the results of this 

study and the fact that ratios and proportions are notoriously misunderstood (Singh, 

2000), it could be valuable to be aware of where this content falls in the calendar year; 
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course curriculum could be rearranged to minimize the interference of vacation days and 

attain optimal emphasis and continuity. 

Equation/Function Concepts  

The functional relation between two variables is a central concept in prealgebra 

courses. According to Brenner et al. (1995), translating and applying mathematical 

representations of functional relations are two cognitive skills that are essential for 

success in algebraic reasoning. It is therefore encouraging to see significant growth in 

preservice teachers’ knowledge of equation/function concepts after their completion of 

Math 130. In addition, the one question on the administered instrument identified as 

receiving fewer incorrect responses than predicted is in the area of equations/functions. 

Students performed exceptionally well on the item that addresses the relationship 

between two variables displayed by a linear graph. This result agrees with previous 

findings showing that students handle functions better when they are given in graphical 

versus algebraic form (Markovits et al., 1988). 

These results, however, could be considered somewhat surprising, given that the 

Math 130 curriculum clearly focuses on numbers and numerical operations rather than on 

equations and functions. In fact, only three class days were dedicated to the study of 

relations and functions. The students spent two class days discussing this content and a 

third class day cooperatively completing an activity, “Fun with Functions!” (Willard, 

2006). This activity asked students to represent functional relationships, described in 

words, in multiple ways using symbols, tables, and graphs. Furthermore, this brief 

introduction to functions and relations was presented at the end of September 2006, 
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almost 11 weeks prior to the instrument’s posttest administration. The significant growth 

in equation/function knowledge could be attributed to students being reacquainted with 

material they have encountered in the past but have since forgotten. For many students, 

Math 130 is the first mathematics course they have taken since their sophomore or junior 

year of high school. Perhaps it is merely the review of mathematical content that is 

leading to observed growth in the field of equations and functions.  

Despite the significant growth observed after seemingly minimal coverage of 

functions and relations, there is clearly room for improvement in this area. Recall that, 

three of the four items identified as troublesome address equation/function concepts. In 

part, these three items ask students to: (1) write a formula to represent a geometric 

pattern, (2) identify which of multiple representations of functional relationships 

(including a geometric pattern, a story-problem, and algebraic statements) correspond to 

the same relationship, and (3) interpret functional relationships described within written 

story-problem contexts.  

The consistency found among these three items is not surprising considering that 

functions are notoriously challenging (Brenner et al., 1995). Not only do letter usage and 

algebraic notation cause difficulties for many students (Küchemann, 1978, 1981; 

Macgregor & Stacey, 1997; Sleeman, 1984), symbol confusion, misconceptions of 

equality, the conventional method of reading conversions (Booth, 1986), and reversal 

errors (Clement et al., 1981; Wollman, 1983) cause students to incorrectly read algebraic 

equations and translate word sentences into algebraic equations. Therefore, it could also 
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be beneficial to increase the numbers of days dedicated to the study of this topic in the 

Math 130 curriculum. 

Common Content Knowledge 

The content covered throughout the Math 130 curriculum does not exceed that 

which is typically covered in K-8 classrooms. Furthermore, common content knowledge 

only requires that a person possess the skills and procedures necessary for solving (not 

explaining or representing) mathematical problems. The common content knowledge 

tested by the instrument designed for this study only investigated students’ abilities to 

solve K-8 level mathematics problems dealing with prerequisite algebra concepts, and yet 

significant growth was noted upon the completion of Math 130. This finding supports 

existing literature that establishes preservice and inservice elementary teachers’ content 

knowledge as insufficient and/or identifies gaps in teachers’ content knowledge (Ball, 

1990, Ball & Wilson, 1990, Ilany et al., 2004). Therefore, the need for courses such as 

this one, heavy in content and dedicated to K-8 mathematical content for future 

elementary teachers, is reinforced.  

Mastery of this level of mathematical computation was assumed due to the 

prerequisites for Math 130 enrollment. In order to enroll in this course, students have to 

meet one of the following four requirements: 

• Successful completion of Introductory Algebra (or a higher level mathematics 

course) with a grade of D or better 

• Successful completion of Montana State University’s Math Placement Test at 

Level III (which allows enrollment in College Algebra) 



131 

• ACT math score of 23 or higher 

• SAT math score of 530 or higher   

One would expect these prerequisite options to demand a substantial mastery of K-8 

computational mathematics. However, for the semester under investigation, course 

prerequisites were not strictly enforced. This may have influenced the level of 

prerequisite knowledge students brought with them to the course and hence influenced 

the growth that was identified in common content knowledge of K-8 level mathematics.  

Specialized Content Knowledge 

In the field of mathematics, how teachers hold knowledge may matter more than 

how much knowledge they hold (Hill & Ball, 2004). In fact, “teaching quality might not 

relate so much to performance on standard tests of mathematics achievement as it does to 

whether teachers’ knowledge is procedural or conceptual, whether it is connected to big 

ideas or isolated into small bits, or whether it is compressed or conceptually unpacked” 

(Hill & Ball, 2004, p. 332). Researchers assert that this additional knowledge required of 

teachers (or lack thereof) will affect their teaching decisions and ultimately their students’ 

achievements in mathematics (Ball & Wilson, 1990; Graeber, 1999; Lee et al., 2003; 

Rine, 1998).  

Practical experience as a teacher was once believed by scholars to be the best way 

for a person to acquire any aspect of pedagogical content knowledge. In fact, collegiate 

teacher education was thought to be incapable of making significant contributions to what 

teachers need to know or be able to do (Ball & Wilson, 1990). However, the potential 

power of content courses to enhance such knowledge has been demonstrated by the work 
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of Davis and McGowen (2001), who illustrated that the mathematical understanding of a 

preservice elementary teacher significantly improved during a mathematics content 

course. The current study extends Davis and McGowen’s valuable research beyond a 

singular case study to show that similar results can be found for larger groups of students.  

 Since Math 130 is one of only two required mathematics content courses for 

elementary education majors at Montana State University, research recommends that this 

course be used to develop specialized content knowledge, the content knowledge that is 

specific to the needs of teachers (Stacey et al., 2001). Battista (1994) urges teacher 

education institutions to offer numerous mathematics courses for teachers that treat 

mathematics as sense making, rather than rule following. Teachers must be taught 

mathematics properly before they can be expected to teach it properly. Furthermore, 

Battista (1994) warns that simply having preservice teachers take more college-level 

mathematics courses will not adequately prepare them to teach elementary mathematics. 

Most university mathematics courses merely reinforce the view of mathematics as a set 

of memorized procedures; hence, taking more of them will not benefit preservice 

elementary teachers in the area of specialized content knowledge (Battista, 1994). 

Alarmingly, “few mathematics courses offer opportunities to learn mathematics in 

ways that would produce such knowledge” (Ball, 2003, p. 8). University courses required 

of preservice elementary teachers often do not have the time or concentration needed to 

develop the mathematical knowledge that is essential for elementary teachers (Battista, 

1994). Counter to previous findings (see Ball & Wilson, 1990), the results of the current 

study show a significant increase in preservice elementary teachers’ specialized content 
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knowledge of prerequisite algebra concepts upon completion of Math 130. Therefore, this 

study provides additional evidence in support of the numerous scholars who argue that it 

is not only necessary, but in fact possible, for teacher educators to advance preservice 

teachers’ pedagogical content knowledge within collegiate course settings (Battista, 

1994; Chen & Ennis, 1995; Davis & McGowen, 2001; Manouchehri, 1996; Miller, 1999; 

Stacey et al., 2001). 

This finding also supports the structure and delivery of this content course for 

elementary education majors. The Math 130 course curriculum, which is considered to be 

standard for this type of mathematics content course offered for elementary education 

majors, sequentially followed Chapters 1-9 of a traditional textbook, Mathematics for 

Elementary Teachers:  A Contemporary Approach, 7th edition (Musser et al., 2006), with 

only minor deviations and supplementary materials (see Chapter 3, pp. 63-67 for 

complete course description). 

The teachers of Math 130 incorporated multiple strategies through a variety of 

materials, manipulatives, and hands-on activities. The preservice teachers were also 

exposed to students’ thinking and common errors through examples of K-8 students’ 

work. It can be very time-consuming to integrate aspects of mathematics teaching that are 

typically considered to be methodology into content courses. However, the significant 

growth in specialized content knowledge observed through this study encourages the 

continuation of practices, such as these, that may help students extend their knowledge 

beyond that which is considered common content knowledge. Furthermore, this study 

showed a strong, positive relationship between preservice teachers’ specialized and 
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common content knowledge of prerequisite algebra skills. The fact that both types of 

knowledge can be enhanced simultaneously provides further incentive to blend the ideas 

and practices that are generally divided between content and methodology courses.  

It is noteworthy that these findings are counter to those of Hill and Ball (2004), 

who suggest that specialized knowledge for teaching mathematics may exist 

independently from common mathematical knowledge. Additionally, Ball et al. (2005) 

found that the results from questions asked of inservice teachers regarding specialized 

knowledge of mathematics were statistically separable from those found from common 

content knowledge items. 

Recommendations for Practice 

If elementary teachers are to successfully prepare students to learn algebra, they 

need to be properly prepared to teach fundamental concepts surrounding the ideas of 

equations and functions. The results of this study suggest that collegiate content courses 

for elementary education majors should dedicate substantial time to the study of 

equation/function concepts, especially the reading, writing, and representing of functions 

and formulas. Math 130 is an essential piece of preservice elementary teachers’ 

preparation to teach algebra, and this study suggests that dedicating even as few as three 

class days to the study of functions and relations significantly helped advance preservice 

teachers’ knowledge of these concepts. Therefore, it is vital that teacher educators 

continue to address this content in content courses for elementary education students. The 

fact that three of the four items identified as being troublesome for preservice teachers 



135 

addressed equation/function ideas further supports increasing student exposure to 

equation/function content.  

The three troublesome items pertaining to equation/function ideas addressed:  

(1) analyzing multiple representations of functional relationships, (2) interpreting 

functional relationships described within written story-problems, and (3) writing 

formulas. This finding calls attention to the need, stated by Manouchehri (1996), for 

development of representations and representational contexts that will enable teachers to 

draw connections between concepts and applications. In addition, students must be taught 

to ask themselves questions regarding the equations that they write and to create 

meaningful ways of checking their answers. Wollman (1983) states that with tools such 

as these, teachers could help strengthen students’ fluency in writing equations. 

Collegiate content courses for elementary education majors should also work to 

enhance student understanding and correct student misconceptions regarding ratios and 

proportions. “Proportional reasoning is at the heart of mathematics in the upper grades of 

the elementary schools and in the middle schools…Therefore, the topics of ratio and 

proportion should have central part in mathematics curriculum for children in school as 

well as for preservice mathematics teacher education” (Ilany et al., 2004, p. 81). 

Suggestions include increasing the number of days dedicated to this topic beyond the 

current two, repeatedly using the content by embedding ratio and proportion ideas within 

subsequent course content, or integrating a research-based model of teaching ratios and 

proportions, such as the one suggested by Ilany et al. (2004). Furthermore, curriculum 

design should give special consideration to notoriously difficult content such as ratio and 
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proportions. In order to maximize student learning, content that has been proven to be 

troublesome needs to be carefully placed into  course schedules to attain optimal 

emphasis and continuity. 

It is also important for content courses to expose students to multiple strategies, 

through a variety of materials, manipulatives, and hands-on activities, such as those used 

in the Math 130 course under investigation. Although it can be very time-consuming to 

integrate aspects of mathematics teaching that are typically considered to be methodology 

into content courses, the results of this study encourages the continuation of these 

practices. The strong, positive relationship between preservice teachers’ specialized and 

common content knowledge and the significant growth of specialized content knowledge 

identified through this study provide incentive to blend content and pedagogy ideas and 

practices together in a way that can enhance both types of knowledge simultaneously. 

Lastly, due to the significant increase found in the common content knowledge of 

Math 130 students, it is clear that these preservice teachers had not mastered 

computational skills of K-8 level prerequisite algebra concepts prior to taking this class. 

Therefore, the implementation and enforcement of prerequisites for content courses for 

preservice teachers, such as this one, is recommended. 

Directions for Future Research 

Effective means of defining and testing the knowledge of preservice teachers are 

necessary to assure successful teacher preparation. Levels of adequacy in terms of both 

common and specialized content knowledge need to be established so that preservice 
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teachers can be accurately evaluated upon the completion of their collegiate studies, prior 

to certification. Since researchers have asserted that various types of knowledge are 

essential for effective teaching (Ball, 2003, 2006; Hill & Ball, 2004; Hill et al., 2004; 

Rowan et al., 2001; Shulman, 1986), certification exams should be carefully examined to 

assure that items are addressing more than teachers’ common content knowledge alone.  

Not all teacher preparation programs offer a content course which directly 

addresses K-8 mathematics. Some programs require elementary education students to 

take college-level or general education mathematics courses, such as College Algebra or 

Calculus. However, Battista (1994) claims that additional college-level mathematics 

courses are not capable of enhancing specialized content knowledge. It would be very 

valuable to test Battista’s assertion by comparing groups of preservice elementary 

teachers during and after their completion of programs with differing mathematics course 

requirements. 

Research has shown that methods courses (Ward et al., 2003) and practical 

experiences as a teacher (Ball & Wilson, 1990) have successfully increased various 

aspects of teachers’ pedagogical content knowledge. Therefore, this study should be 

extended into a longitudinal study that not only tests preservice teachers’ knowledge 

before and after completion of content courses, but again after completion of methods 

courses and student teaching. Only then will teacher educators truly discover where and 

how mathematics teachers’ content knowledge, particularly that which is specialized, is 

developed and be able to encourage its growth. 
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Testing teachers’ mathematical knowledge will not benefit K-8 students, 

however, if teacher knowledge does not translate into the classroom. The researcher’s 

future work will broaden this exploration to investigate the ways in which teacher 

knowledge is utilized within the mathematics classroom. How teachers can and do use 

their mathematical content knowledge when teaching will be examined. Specifically, how 

does a teachers’ specialized content knowledge affect the activities done in the classroom 

and/or the opportunities provided students? 

The ultimate goal of this research is to increase student achievement; therefore 

this work should be extended to enhance the understanding of how teacher knowledge 

affects student learning. Research has already suggested that teachers’ knowledge does 

have an effect on student achievement (Hill et al., 2005); however, more studies are 

needed to confirm this finding.  

Lastly, since algebra preparation needs to occur within the K-8 mathematics 

curriculum, this research has focused on elementary and middle school teachers. The 

design and methodology of this study, however, could easily be extended to apply to 

other grade bands or content areas. 

Conclusion 

Research suggests that for students to succeed in Algebra I (or an equivalent first 

algebra course), they must master both number and equation/function concepts (see  

p. 2 for specific algebra prerequisites and pp. 71-72 for concept definitions) throughout 

their K-8 mathematics education (Welder, 2006). Furthermore, research has illustrated 
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that student achievement is affected by teachers’ knowledge (Fennema & Franke, 1992; 

Greenwald et al., 1996). In fact, what a teacher knows is one of the most important 

influences on what is done in classrooms and ultimately on what students learn (Fennema 

& Franke, 1992).  Hence, for students to be properly prepared to learn algebra, 

elementary and middle school (K-8) teachers must have satisfactory knowledge of 

prerequisite algebra concepts.  

The mathematical content knowledge needed for effective teaching consists of 

pedagogical content knowledge, in addition to common content knowledge (Ball, 2003, 

2006; Hill & Ball, 2004; Hill et al., 2004; Rowan et al., 2001; Shulman, 1986) (see pp. 4-

5 for knowledge framework and definitions). Since the enhancement of pedagogical 

content knowledge can help connect one’s subject content knowledge with the 

curriculum delivered in classrooms (Chen & Ennis, 1995), it is vital that K-8 teachers 

have the opportunity to develop this knowledge in terms of prerequisite algebra concepts. 

The current study found that preservice elementary teachers’ knowledge 

successfully grew in both common and specialized content knowledge in the areas of 

numbers, equations, and functions over the course of a one-semester, undergraduate 

content course designed for elementary education students. These findings validate the 

usefulness of content specific courses for teachers, such as this one, and the ability of 

collegiate courses to enhance understanding beyond what is considered common content 

knowledge. Specific content areas, namely ratios/proportions and the writing and 

representing of functions and formulas, were identified as troublesome for preservice 

teachers, and recommendations for teacher educators were made.  
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Increasing teachers’ mathematical content knowledge of prerequisite algebra 

concepts will positively affect the algebra achievement of future K-8 students. To that 

end, the work of this study offers results and recommendations to advance the content 

knowledge of preservice and inservice mathematics teachers by guiding and informing 

collegiate teacher preparation courses.  
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